Sous la direction de Françoise Moos
Thèse soutenue le 16 décembre 2010: Bordeaux 2
L’état fébrile et le vieillissement normal sont deux processus physiologiques conduisant à un déséquilibre hydrominéral de l'organisme. Ce déséquilibre se traduit par une déshydratation sévère qui peut être aggravée par des conditions climatiques comme nous l'avons vu durant l'été 2003. Dans les deux cas, fièvre et vieillissement, l'organisme répond par une stimulation du système hypothalamo-neurohypophysaire conduisant à l’augmentation de la libération de vasopressine ou hormone antidiurétique, qui pourrait prévenir une déshydratation possiblement critique. Cependant, les modalités d’activation des neurones vasopressinergiques (AVP) dans ces conditions restent inconnues.Le but des recherches réalisées dans cette thèse, a été de déterminer les mécanismes cellulaires et moléculaires responsables de l’activation des neurones vasopressinergiques (AVP) lors d’une réponse inflammatoire et au cours du vieillissement.Nous avons pu démontrer dans la première partie de ce travail que lors d’un épisode inflammatoire (mimé par une injection de lypopolysaccharide LPS) l’activité des neurones AVP est rapidement augmentée et cette activation est soutenue pendant plus de six heures. De plus, cette activation n’est pas due à un effet potentiel secondaire du LPS sur l'osmolarité plasmatique ou la pression artérielle. L’activation précoce des neurones AVP par le LPS semble être soutenue par l’IL-6 (qui mime les effets du LPS), puisque l’activation par le LPS est bloquée par une injection préalable d’anticorps anti-IL-6.Dans la seconde partie de ce travail, nous avons pu montrer le traitement chronique d’IGF-I chez le rat âgé permet de restaurer une fonction urinaire comparable à celle observée chez l’adulte, en agissant vraisemblablement directement sur les neurones AVP puisque le taux plasmatique d’AVP chez les rats âgés traités par l’IGF-I revient à des valeurs normales, i.e., équivalente à celle de rats adultes. Cette hypothèse est confortée par le fait que (i) les neurones AVP expriment le récepteur de l’IGF-I et qu’il n’y a pas de différence dans l’expression de ces récepteurs entre rats âgés et adultes, et (ii) les neurones AVP sont inhibés par l’IGF-I.Enfin, dans la dernière partie de ce travail, nous avons pu montrer que lors du vieillissement, les neurones AVP sont activés, ce qui se traduit par un taux plasmatique d’AVP élevé et un taux d’apeline très faible. De même, les astrocytes sont activés et ne présentent plus de plasticité morphofonctionelle. La microglie, en état d’alerte, ne semble pas jouer un rôle prépondérant dans cette suractivation neuronale et astrocytaire. De plus, cette suractivation neuronale est palliée par un traitement central par un anticorps anti-IL-6 ou un inhibiteur non sélectif des canaux TRPV. Cependant, un traitement central par un anticorps anti-IL-6 n’affecte pas l’expression des TRPV2 dans le noyau supra-optique (NSO). En conclusion générale, il apparait que :1/ L’IL-1 n’est pas le chef d’orchestre de tous les processus inflammatoires. En effet, dans le NSO, l’activation des neurones AVP est soutenue par l’IL-62/ La balance pro- / anti-inflammatoire est un élément importante du dysfonctionnement neuronal. Cependant, le facteur critique du dysfonctionnement des neurones AVP n’est pas la production excessive de facteurs inflammatoires mais l’insuffisante production compensatoire de facteurs anti-inflammatoires.3/ lors du vieillissement, la neuroinflammation responsable du dysfonctionnement des neurones AVP peut être qualifiée de type « chronique à bas bruit », processus dans lequel (i) la microglie, en alerte, voit sa réactivité décuplée lors d'une sollicitation inflammatoire supplémentaire; (ii) le cross-talk astrocytes-neurones est figé dans une configuration d'hyperactivité, semblable à celle observée à l'âge adulte en condition de stimulation physiologique soutenue (comme lors d'une déshydratation), mais qui empêche toute réponse appropriée du réseau à toute demande physiologique supplémentaire, quelle soit transitoire (comme la réponse à une injection aigüe de LPS ou de NaCl 9%) ou soutenue (déshydratation de 48h).Cependant, les données de la littérature montrent le rôle majeur de la microglie dans d'autres types de neuroinflammation dites à « haut bruit », et dont les effets délétères - qui vont du dysfonctionnement neuronal à la neuro-dégénérescence – trouvent leur origine dans la surexpression de molécules microgliales telles l'IL-1 ou le TNF. Pour tenter de comprendre les mécanismes cellulaires et moléculaires impliqués dans un tel dysfonctionnement et pour caractériser la nature du dysfonctionnement neuronal, nous avons mis au point un modèle pharmacologique de neuroinflammation à haut bruit, en injectant directement dans les NSO de l'IL-1. Nos données préliminaires montrent que le dysfonctionnement neuronal ainsi que les mécanismes cellulaires et moléculaires à l’origine de ce dysfonctionnement diffèrent de ceux observés lors du vieillissement : la microglie est activée et surexprime de nombreuses molécules inflammatoires, probablement à l’origine du dysfonctionnement neuronal (absence de pattern phasique, même lors d’une stimulation osmotique), puisque les astrocytes ne semblent pas être affectés. L’absence de pattern phasique à l’origine du faible taux d’AVP plasmatique traduit une perturbation des propriétés électrophysiologiques intrinsèques sous-tendant ce pattern phasique (récepteurs ; canaux ioniques) et/ou des afférences excitatrices (Glu ; ACh ; Na) ou inhibitrices (GABA) modulant cette activité phasique.
-Neuroinflammation
-Vieillissement
-Noyau Supraoptique
-Lps
-Fonctionnement neuronal
-Glie
-Vasopressine
-Apeline
The fever and normal aging are two physiological processes leading to water and mineral imbalance in the body. This imbalance results in severe dehydration which can be aggravated by climatic conditions as we saw during the summer of 2003. In both cases, fever and age, the body responds by stimulating the hypothalamic-neurohypophysial system leading to increased release of vasopressin or antidiuretic hormone, which could possibly prevent dehydration criticism. However, the modalities of activation of vasopressinergic neurons (AVP) in these conditions remain unknown. The aim of the research done in this thesis was to determine the cellular and molecular mechanisms responsible for the activation of vasopressinergic neurons (AVP) during an inflammatory response and during aging. We showed ,in the first part of this work, that during an inflammatory episode (mimicked by an injection of lypopolysaccharide LPS) the activity of AVP neurons is rapidly increased and this activation is sustained for more than six hours. Moreover, this activation is not due to a potential secondary effect of LPS on plasma osmolarity and blood pressure. The early activation of AVP neurons by LPS seems to be supported by IL-6 (which mimics the effects of LPS), since activation by LPS is blocked by prior injection of anti-IL-6. In the second part of this work, we showed chronic treatment of IGF-I in old rats can restore bladder function similar to that observed in adults, presumably by acting directly on neurons AVP as the rate plasma AVP in aged rats treated with IGF-I returned to normal values, ie, equivalent to that of adult rats. This hypothesis is supported by the fact that (i) AVP neurons express the receptor for IGF-I and there is no difference in the expression of these receptors between adult and aged rats, and (ii) AVP neurons are inhibited by IGF-I. Finally, in the latter part of this work, we showed that during aging, the AVP neurons are activated, which results in increased serum AVP level and a very low rate of apelin. Similarly, astrocytes are activated and show more morphofunctional plasticity. Microglia does not seem to play a role in neuronal and astrocytic overactivation. Moreover, this neuronal overactivation is overcome by a central processing by an anti-IL-6 or a nonselective TRPV channels. However, an icv treatment by an anti-IL-6 does not affect the expression of TRPV2 in the supraoptic nucleus (SON). In general conclusion, it appears that: 1 / IL-1 is not the conductor of all inflammatory processes. Indeed, in the NSO, the activation of AVP neurons is sustained by IL-6 2 / the balance of pro-/ anti-inflammatory is significant in neuronal dysfunction. However, the critical factor in the dysfunction of AVP neurons is not the excessive production of inflammatory factors, but the insufficient production of compensatory anti-inflammatory factors. 3 / during aging, neuroinflammation responsible for the dysfunction of AVP neurons can be classified as type chronic and low-grade process in which (i) microglia, in alert, saw its reactivity increased tenfold during inflammatory additional solicitation; (ii) cross-talk astrocyte-neuron is stuck in a pattern of hyperactivity, similar to that observed in adulthood under conditions of sustained physiological arousal (such as in dehydration), but that would prevent the proper response network to any additional physiological demand, which is transient (as the response to acute injection of LPS or NaCl 9%) or sustained (48 h dehydration). However, literature data show the important role of microglia in other types of neuroinflammation called high grade, and whose deleterious effects - ranging from neuronal dysfunction to neurodegeneration - are rooted in Microglial overexpression of molecules such as IL-1 or TNF . In an attempt to understand the cellular and molecular mechanisms involved in such dysfunction and to characterize the nature of neuronal dysfunction, we have developed a pharmacological model of neuroinflammation high grade by injecting IL-1 directly into the SON. Our preliminary data show that neuronal dysfunction and the cellular and molecular mechanisms behind this dysfunction differ from those observed during aging: activated microglia overexpressing many inflammatory molecules, probably at the origin of neuronal dysfunction ( absence of phasic pattern, even during osmotic stimulation), since astrocytes do not appear to be affected. The absence of phasic pattern causing the low plasma AVP reflects a disturbance of intrinsic electrophysiological properties underlying the phasic pattern (receptors, ion channels) and / or afferent excitatory (Glu, ACh, Na) or inhibitory (GABA) modulating the phasic activity.
-Neuroinflammation
-Aging
-Supraoptique Nucleus
-Lps
-Neuronal Function
-Glia
-Vasopressin
-Apelin
Source: http://www.theses.fr/2010BOR21755/document
Voir