Hirzebruch homology [Elektronische Ressource] / vorgelegt von Augusto Minatta

icon

123

pages

icon

English

icon

Documents

2004

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

123

pages

icon

English

icon

Documents

2004

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

orgelegtINAhenUGURALMorb-atDISSERerTderA30.3.2004TIONergzuronErlangungMinattaderTDoktorwurdederHeidelbNaturwissenscvhaftlicvh-MathematiscDiplom-MathematikhenAugustoGesamaustfakultegnoagatmderundlicRuprecPrhufung:t-Karls-UniversitLauresHirzebruckhMatthiasHomologyDr.Gutach.c.hKrecter:Prof.Prof.GerdDr.Dr.forInbytrosignaturesductionndFortheaandiscretesagroupevvandZa(rationalacohomologyandclassertxis2alenceH(fundamenKwhile(vikConjecture.;,1);thatQb),classicalthecannothigherinsignatureordeterminedhigherbvytation-preservingx!isMthexcxharacteristic:nthatum=binercasesigThesexthe:NoxS;Oturinvariant.(oKand(toulation;iii1))tly!ectQh[arianceM.;reason,that]sig!ygroupwhereallLhomotop(arianMstudied)isZtheledLv-classulationofconjecture:Mo.orByHdenition,(theQsignaturehighersigdetermine1is(isMNo;conjecturestatemen)w=insuconlyandepvendsproponyMF.thisFoneurthermore,ysaccordingthetosignaturethexHirzebruchomotophinsignatureariantheorem,iftheevnorienumhomotopbequiverf Voir icon arrow

Publié le

01 janvier 2004

Nombre de lectures

32

Langue

English

orgelegt
INA
hen
UGURAL
Morb
-
at
DISSER
er
T
der
A
30.3.2004
TION
erg
zur
on
Erlangung
Minatta
der
T
Doktorw



urde

der
Heidelb
Naturwissensc
v
haftlic
v
h-Mathematisc
Diplom-Mathematik
hen
Augusto
Gesam
aus
tfakult
egno

ag
at
m
der
undlic
Ruprec
Pr
h
ufung:
t-Karls-Univ
ersitLaures
Hirzebruc
k
h
Matthias
Homology
Dr.
Gutac
h.c.
h
Krec
ter:
Prof.
Prof.
Gerd
Dr.
Dr.for
In
by
tro
signatures
duction
nd
F

or
the
a
an
discrete
sa
group
ev

v
and
Z
a
(
rational
a
cohomology
and
class
ert
x
is
2
alence
H



(
fundamen
K
while
(
vik

Conjecture.
;
,
1);
that
Q
b
),
classical
the
cannot
higher
in
signature
or
determined
higher
b
v
y
tation-preserving
x
!
is
M
the
x
c
x
haracteristic
:
n
that
um
=
b
in
er
case
sig
These
x
the
:
No

x
S
;
O
tur

invariant.
(
o
K
and
(
to

ulation
;
iii
1))
tly
!
ect
Q
h
[
ariance
M
.
;
reason,

that
]
sig
!
y
<
t
L
ery
(
y
M
:
)
and
[


K

1)
(
M
x
=
)
N
;
f
[
vik
M
v
]
manifolds
>
group
where
all
L
homotop
(
arian
M
studied
)

is
Z
the
led
L
v
-class
ulation
of
conjecture:
M
o
.
or
By
H
denition,
(
the
Q
signature
higher
sig
determine
1
is
(
is
M
No
;
conjecture

statemen
)
w
=
in
<
v
L
tegral
(
it.
M
h
)
,
;
consequen
[
one
M
exp
]
to
>
suc
only
an
dep
v
ends
prop
on
y
M
F
.
this
F
one
urthermore,
ys
according
the
to
signature
the
x
Hirzebruc
homotop
h
in
signature
arian
theorem,
if
the
ev
n
orien
um
homotop
b
equiv
er
f
<
N
L
M
(
for
M
ery
)
:
;
!
[
(
M
;
]
sig
>
(
is
;
equal
)
to
sig
the
(
index
;
of

the
)
in
No
tersection
o
form
disco
of
ered
M
for
,
with
and
tal
th

us
Z
it
higher
follo
are
ws
y
that
v
if
t,
there
Rokhlin
exists
the
an
of
orien
=
tation-preserving

homotop
.
y
examples
equiv
No
alence
o
N
to

form
M
of
,
general
then
The
for
vik
all
v

F
;
any

2
sig

1
K
(

M
1);
;
)

the
)
signa-
=
e
sig
d
1
x
(
homotopy
N
It
;
clear

the
)
vik
:
v
In
is
general
rational
ho
t,
w
it
ev
ould
er,
e
the
teresting
higher
ha
signatures
e
do
in
also
form
dep
of
end
A
on
approac
the
to
map
(
iv
class
In
h
tro
K
duction
2
this
uous
question
M
mak
the
es
man-
use
;
of
b
L

-theory:

it
M
has
t
b
O
een
transformation
sho
b
wn
to
that
),
the
whic
No
M
vik
[
o
(
v
in
conjecture
homotop
is
M
equiv

alen
M
t
u
to

the
)
assertion
b
that
n
the
This
assem
M
bly
n
map
u
is
hh
a
e
rational
of
injection,
denote
and
].
th
an
us
e
an
]
in
])
tegral
Hirzebruc
v
b
ersion
for
of
an
the
f
No
y
vik

o
=
v
2
conjecture
1))
can
)
b
4
e
b
obtained
homomorphism
b

y
(
requiring
hh
the
)
assem
the
bly
for
map
orien
to
M
b
maps
e
class
an
id
in
S
tegral
M
split
elemen
injection.
([
What
])
w
(
e
h
w
the
an
tal
t
,
to
w
discuss
simplicit
here
[
is

a
X
more
con
geometrical
then
and
b
in
;
tuitiv
elemen
e
([
approac
hh
h
).
whic
fundamen
h
said
has
homotop
b
arian
een
discrete
suggested
if
recen
orien
tly
equiv
b
N
y
for
Matthias

Krec
K
k.
1)
Krec

k's
N
idea
f
is
n
to

in
(
tro
n
duce

a
n=
homology
Let
theory

hh
e

group
(
u
),
:
whic
S
h

he
M
calls
!
Hirzebruc

h
M
homology
induced
,
y
and
natural
whic
u
h
an
has
-dimensional
the
ted
follo
ifold
wing
.
fundamen
homomorphism
tal
the
prop
ordism
ert
[
y:
;
1.
]
there

is
O
a
(
natural
)
transformation
the
u
t
:

M
S
id
O
2

n
(
M
)
whic
!
w
hh
call

Hirzebruc
(
fundamen
)
class
2.
M
there
and
is
h
an
e
isomorphism
for

y
:
y
hh
M

If
(pt)
:
'
!
!
is
Z
y
[
tin
t
map,
]
w
suc
indicate
h
y
that
M
the

follo
the
wing
t
diagram

comm
M
utes:
2

n
S
X
O
The

h
u
tal

is
!
to
hh
e

y
(pt)
v
Z
t
[
a
t
group
]
,

for
#
y

tation-preserving

y
Here
alence

:
is
!
the
and
ring
an
homomorphism
map

:
:
!

(
S
;
O
[

;
!
]
Z
[
[
;
t

]
]
[
hh
M
(
n
(
]
;
!
sig

Voir icon more