165
pages
Deutsch
Documents
2009
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Découvre YouScribe en t'inscrivant gratuitement
Découvre YouScribe en t'inscrivant gratuitement
165
pages
Deutsch
Documents
2009
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Publié le
01 janvier 2009
Nombre de lectures
42
Langue
Deutsch
Poids de l'ouvrage
12 Mo
Publié le
01 janvier 2009
Nombre de lectures
42
Langue
Deutsch
Poids de l'ouvrage
12 Mo
Group 4 Metal and Vanadium Bis(phenolato)
Complexes: Synthesis, Structure and Olefin
Polymerisation Activity
Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der
Rheinisch-Westfälischen Technischen Hochschule Aachen
zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften genehmigte Dissertation
vorgelegt von
Master of Science
Geert Johannes Marinus Meppelder
aus
Groningen, Niederlande
Berichter: Universitätsprofessor Dr. J. Okuda
Universitätsprofessor Dr. A. Salzer
Tag der mündlichen Prüfung: 11.09.2009
Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar.
The work presented here was carried out between May 2004 and December 2008 in the
laboratories of Prof. Dr. J. Okuda at the institut für Anorganische Chemie of the RWTH
University, Aachen. Parts of this dissertation have been published in scientific journals.
Chapter 2:
Meppelder, G. J. M., Spaniol, T. P., Okuda, J. J. Organomet. Chem. 2006, 691, 3206-3211.
Chapter 3:
Beckerle, K.; Manivannan, R.; Lian, B.; Meppelder, G. J. M.; Raabe, G.; Spaniol, T. P.;
Ebeling, H.; Pelascini, F.; Mülhaupt, R.; Okuda, J. Angew. Chem., Int. Ed. 2007, 46, 4790-
4793.
Meppelder, G. J. M.; Beckerle, K.; Manivannan, R.; Lian, B.; Raabe, G.; Spaniol, T. P.;
Okuda, J. Chem. Asian J. 2008, 3, 1312-1323.
Chapter 4:
Meppelder, G. J. M.; Halbach, T. S.; Spaniol, T. P.; Okuda, J. J. Organomet. Chem. 2009,
694, 1235-1237.
Chapter 5:
Meppelder, G. J. M.; Fan, H. -T.; Spaniol, T. P.; Okuda, J. Inorg. Chem. 2009, 48, 7378-7388.
Chapter 6:
Meppelder, G. J. M.; Fan, H. -T.; Spaniol, T. P.; Okuda, J. Organometallics, 2009, 28, 5159-
5165.
Für Anika
“An experiment is a question which science poses to Nature, and a measurement is the
recording of Nature's answer.”
~Max Planck, Scientific Autobiography and Other Papers (1949, p110)
Contents
Chapter 1 General Introduction 3
1.1 Context 3
1.2 Group 4 Metal Phenolato-Based Catalysts with Sulfur Donor Atoms 5
1.2.1 [OS]- and [OSO]-type ligands 5
1.2.2 Tetradentate [OSSO]-type ligands 7
1.3 Scope and Outline of this Thesis 12
1.4 References and Notes 13
Chapter 2 Synthesis and Partial Hydrolysis of an [OSSO]-Type
Bis(phenolato) Titanium Binaphtolato Complex 19
2.1 Introduction 19
2.2 Results and Discussion 20
2.2.1 Synthesis and resolution 20
1.2.2 Partial hydrolysis 22
2.3 Conclusions 24
2.4 Experimental Section 24
2.5 References and Notes 26
Chapter 3 Optically Active Oligostyrenes from Enantiomerically
Pure [OSSO]-Type Titanium Complexes 31
3.1 Introduction 31
3.2 Results and Discussion 32
3.2.1 Ligand synthesis and resolution 32
3.2.2 Complex synthesis and characterisation 36
3.2.3 Benzyl cation 39
3.2.4 Styrene polymerisation 42
3.2.5 Styrene oligomerisation 42
3.3 Conclusions 46
3.4 Experimental Section 46
3.5 References and Notes 63
Chapter 4 Synthesis and Polymerisation Activity of a Chiral
[OSSO]-Type Bis(phenolato) Vanadium(V) Complex 69
4.1 Introduction 69
4.2 Results and Discussion 69
3.2.1 Synthesis and characterisation 69
3.2.2 Olefin polymerisation 71
4.3 Conclusions 72
4.4 Experimental Section 72
4.5 References and Notes 74
Chapter 5 Asymmetric [OSNO]-Type Titanium Complexes:
Synthesis, Structure and Olefin Polymerisation 77
5.1 Introduction 77
5.2 Results and Discussion 78
5.2.1 Ligand synthesis 78
5.2.2 Complex synthesis and characterisation 80
5.2.3 Isomerisation 87
5.2.3 Olefin polymerisation activity 88
5.3 Conclusions 89
5.4 Experimental Section 90
5.5 References and Notes 102
Chapter 6 [ONNO]-Type Complexes of Group 4 Metals:
Synthesis, Structure and Olefin Polymerisation 109
6.1 Introduction 109
6.2 Results and Discussion 111
6.2.1 Synthesis and characterisation 111
6.2.2 Olefin polymerisation activity 116
6.3 Conclusions 118
6.4 Experimental Section 118
6.5 References and Notes 123
Summary 127
Zusammenfassung 133
Appendix 139
A.1 Experimental Details 139
A.2 X-ray Diffraction Analyses 141
References and notes 141
Crystallographic data tables 142
A.3 Supplementary Information 149
A.4 Curriculum Vitae 151
A.5 Index of Compounds 154
A.6 List of Abbreviations 157
Acknowledgements 161
Chapter 1
2 General Introduction
1. Generalntroduction
1.1 Background
To be active in homogeneous or heterogeneous olefin polymerisation, ZieglerNatta
catalysts must contain a reactive metalcarbon bond and an electron deficient and
coordinativelyunsaturatedmetalsitecapableofaccommodatingthemonomer.Thenatureof
the active species in homogeneous group 4 metal ZieglerNatta catalysis has remained
unknown until 1986, when several research groups published structures of active cationic,
+electrondeficientbis(cyclopentadienyl)metalalkylcomplexesofthetype[Cp MR] (M=Ti,2
1
Zr). ThepossibilityofparticipationofacationicactivespecieswassuggestedbyShilovand
2
coworkersasarlys961.
A mechanism for polymerisation by ZieglerNatta catalysts that has become generally
3acceptedwasproposedbyCosseeandArlmanin1964. Importantfeaturesofthismechanism
areLewisacidityofthemetalcentreandmutual cisorientationoftheincomingmonomerand
the metalalkyl bond of the catalyst. This mechanism has been confirmed by ab initio
+ 4calculationsperformednCp’ TiMe] 5thene(Scheme.1). 2
H
H
H H HH H CH HHC C HH HH H C C C C C CH HH
HH H HC C H
M M C M M
HH HH
H
Scheme 1.1
Theintroductionofmethylaluminoxane(MAO)ascocatalyst/scavengerinthelate1970s
enabled the polymerisation of αolefins that could not be polymerised with homogeneous
5,6catalysts before. Other structurally welldefined cocatalysts were developed that generate
anionsthatmimictheweaklycoordinatingnatureofMAO,deemedtobeessentialtoachieve
7
good polymerisation activity. The resulting surge of new cyclopentadienylbased
3 Chapter 1
polymerisation catalysts lead to a better understanding of the relationship between the
8
structurefaatalystandtsolymerisationropertiesndolymermicrostructure.
tBu
Cl
t ClBu O
M
ClSi M N O tBuMCl Cl Cl NN
C F6 5
tBu C F6 5
tBu
M = Ti, ZrM = Ti, Zr, Hf M = Ti, Zr, Hf
A B C
i iPr Pr
i N i N NPr Pr
N N
M
M i iPr Pr
Bri i BrPr Pr
Cl Cl
M = Fe, Co M = Ni, Pd
D E
Figure 1.1. Metallocene and post-metallocene precatalysts for olefin polymerisation.
Sincetheearly1990scatalystdevelopmentgraduallystartedtolookbeyondearly(group
9IIIV) transition metals and cyclopentadienylbased ligands (Figure 1.1, A, B). “Post
metallocene” ligands (CE) were investigatedto improve activity, selectivity, and substrate
10
toleranceofolefinpolymerisationcatalysts. Whileearlytransitionmetalsareoftenstillthe
metal of choice, landmark publications by Brookhart and by Gibson showed that late
transition metalbased catalysts are equally capable of producing high molecular weight
1113
polyethene% D,E ).
1.2 Group 4 Metal Phenolato-Based Catalysts with Sulfur Donor Atoms
1.2.1 [OS]- and [OSO]-type ligands
Group4metalswitharyoxidebasedligandsconstituteasuccessfulfamilyofcatalystsfor
14
polymerisationcatalysis. Bidentatephenolatoligandsforolefinpolymerisationcatalysisare
4 General Introduction
dominated by [ON]type phenoxyimine catalysts (C ), which are easily synthesised and are
15
highlyactiveforabroadrangeofαolefins. Analogousthioetherfunctionalised[OS]type
16
ligands have only very recently been reported. Lewis acidactivated [M{OS} (CH Ph) ]2 2 2
complexes(M=Ti,Zr,Hf)givelowmolecularweightoligo(1hexenes)withpooractivity.
For zirconium, propagation proceeds via 2,1insertion of 1hexene. With the tribenzyl
complex[Zr{OS}(CH Ph) ],poly(1hexene)isobtainedinlowconversion.Polymertacticity2 3
depends on the activator used: activation with B(C F ) leads to an isotactic polymer;6 5 3
activationithl(