Formation and properties of a discrete family of dissipative solutions in a nonlinear optical system [Elektronische Ressource] / vorgelegt von Matthias Pesch

icon

194

pages

icon

English

icon

Documents

2006

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

icon

194

pages

icon

English

icon

Documents

2006

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

solitonsMatthiasfamilyPdissipativhaF2006ormationofandepropinertiesnonlinearofsystemadiscretePExpdererimendertelleMPh|ysikhenFhenormationorgelegtandKpropPhertiesofakultaestfdiscreteersitfamilyunsterofondissipativhe|solitonshinysikanonlinearFsystematInaugural-DissertationWzurErlangungWilhelms-UnivdesatDoktorgradesdervvhaftenMatthiasimFausacolnh2006bDekR.an:agProf.TDr.J.Prof.P.derWhenessels05.02.2007ErsterPromotion:Dr.hFter:hProf.agDr.mW.undlicLangePrZwufung:eiterTderh05.02.2007ter:inotedOneeld,ofolarizationtheelydtralareofasnonlinearphulationsysicsulationsisformationtheosoliton.tItdierisabwoutalostatesbofinexpmainativofethesystemswhicThesehorexhibithingparticle-likhigher-orderesystem.familyOvmertheblastaytheears,ofthetalanalysistoofell-establishedsimilarvloetandacexistingwinticationdissipativthateItsystems,ertiesso-calledwithdissipativthatestatessolitons,resulthasaredevtelopthatedaintowhiconetheirofobservthepresenexistenceissuesaofsolitonsinhofonThetheeformationandofmeanspulse.invspatiallytoextendedresolvdissipativpelighsystems.
Voir icon arrow

Publié le

01 janvier 2006

Langue

English

Poids de l'ouvrage

17 Mo

solitons
Matthias
family
P


dissipativ
h
a
F
2006
ormation
of
and
e
prop
in
erties
nonlinear
of
system
a
discreteP
Exp
der
erimen
der
telle
M
Ph
|
ysik
hen
F
hen
ormation
orgelegt
and
K
prop
Ph
erties

of
akult
a
estf
discrete
ersit
family
unster
of
on
dissipativ
h
e
|
solitons
h
in
ysik
a

nonlinear


F
system
at
Inaugural-Dissertation
W
zur

Erlangung
Wilhelms-Univ
des
at
Doktorgrades

der
v

v
haften
Matthias
im

F
aus
ac
oln
h
2006
b

Dek
R.
an:
ag
Prof.
T
Dr.

J.
Prof.
P

.
der
W
hen
essels
05.02.2007
Erster
Promotion:

Dr.
h
F
ter:
h
Prof.
ag
Dr.
m
W.
undlic
Lange
Pr
Zw
ufung:
eiter
T

der
h
05.02.2007
ter:in

oted
One
eld,
of
olarization
the
ely

d
tral
are


of
as
nonlinear

ph
ulations
ysics
ulations
is
formation
the
o
soliton.
t
It
dier
is

ab
w
out
a
lo
states

b

of
in
exp

main
ativ
of
e
the
systems

whic
These
h
or
exhibit
hing
particle-lik
higher-order
e


system.

family
Ov
m
er

the
b
last
a
y
the
ears,
of
the
tal
analysis
to
of
ell-established
similar
v
lo
et

and

ac
existing
w
in
tication
dissipativ
that
e
It
systems,
erties
so-called
with
dissipativ
that
e
states
solitons,
result
has
are
dev
t
elop
that
ed
a
in

to
whic
one
their
of
observ
the
presen

existence
issues
a
of
solitons

in
h
of
on
The
the
e
formation
and
of
means

pulse.
in
v
spatially
to
extended
resolv
dissipativ
p
e
ligh
systems.
exp
An
ations
analytically

exact
umerical
description
a
of
mo
these
system.
strongly
go
nonlinear
t

een
is
tal
imp
umerical
ossible
b
in
ed.
general.
of
Nev
is
ertheless,
the
w



mo
to
dels
stable
ha
out
v
y
e
the
b
link
een

dev
fron
elop
t
ed
spatially
that
the
explain
extended
the
a
formation
y
of
alen
dissipativ
equiv
e
to
solitons.
e
Ho
The
w
t
ev
tin
er,
a
the
of
magnitude
solitons
of
h

in
w
inner
orks
is

ed
a
the
m
t
uc
The
h
of
smaller
h
n
discrete
um
of
b
w
er
predicted
of
a
exp
ultitude
erimen

ts.
orks.
In

addition,
b
the

latter
ignited
are
erased
often
y
not
of

laser
to
Using
a
no
detailed
el

hnique
analysis.
measure
In
spatially
this
ed
w
of
ork,
olarization
spatial
a
dissipativ
t
e
the
solitons
erimen
are
observ
analyzed

in
e
a


n
simple
sim

of
system
w
whic

h
del
has
the
pro
A
v
ery
en
o
its
agreemen
suitabilit
b
y
w
for
the
the
erimen
exp
ndings
erimen
n
tal
sim
and
has

een
analysis
hiev
of
A

part
formation
this
on
ork
v
dev
arious
to
o
iden

and
Solitons

are
the
observ
hanisms
ed
lead
as
the
lo
of

solitons.
p
turns
olarization
that
states
stabilit
in
prop
the
of
transv
solitons
erse

eld
ed
distribution
the
of
of
a
hing
laser
ts
b

eam
w
whic
stable
h
extended
passes
of
through
system.
an
bistable

states
nonlinear
from
system.
p
In
instabilit

and
trast
equiv
to
t
previous
nearly
exp
alen
erimen
due
tal
the
observ
yp
ations
of
of
bifurcation.
dissipativ

e
fron
solitons,

for

the
uous
rst
time

Voir icon more
Alternate Text