158
pages
English
Documents
2011
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Découvre YouScribe et accède à tout notre catalogue !
Découvre YouScribe et accède à tout notre catalogue !
158
pages
English
Documents
2011
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Publié le
01 janvier 2011
Langue
English
Poids de l'ouvrage
32 Mo
Publié le
01 janvier 2011
Langue
English
Poids de l'ouvrage
32 Mo
Fabrication of nanostructured materials and
their applications
Von der Fakulta¨t fu¨r Mathematik, Informatik und
Naturwissenschaften der RWTH Aachen University
zur Erlangung des akademischen Grades einer
Doktorin der Naturwissenschaften genehmigte Dissertation
vorgelegt von
Master of Science
Lindarti Purwaningsih
aus Sragen, Indonesia
Berichter: Prof. Dr. Martin Mo¨ller
Prof. Dr. Joachim P. Spatz
Tag der mu¨ndlichen Pru¨fung: 12. Januar 2011
Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek
online verfu¨gbar.Fabrication of nanostructured materials and
their applications
Dissertation
accepted by the
Faculty of Mathematics, Computer Science, and the Natural Sciences
of the Rheinisch-Westf¨alische Technische Hochschule Aachen
University, Germany for the degree of
Doctor of Natural Sciences
by
Master of Science
Lindarti Purwaningsih
born in Sragen, Indonesia
Referees: Prof. Dr. Martin Mo¨ller
Prof. Dr. Joachim P. Spatz
Oral examination: January 12, 2011
This dissertation is available online in the university library.Lindarti Purwaningsih
Fabrication of nanostructured
materials and their applications
D 82 (Diss. RWTH Aachen University, 2011)
Max Planck Institute for Metals Research
Department of New Materials and Biosystems, Stuttgart
2011This dissertation is dedicated to my parents:
Purwoatmojo & Sunarti
People who believe in education as a way on making
a better life and a better World.iv
The journey of life is to learn...
until we are wise enough to remember...
home.
-Aryani Willems-Contents
Summary 1
General introduction 3
General methods 5
2.1 Lithographies for nanostructure fabrication . . . . . . . . . . . . . . . . . . 5
2.2 Etching process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 Wet etching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Dry etching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Scanning Electron Microscopy (SEM) . . . . . . . . . . . . . . . . . . . . . 9
2.4 Image analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.1 Voronoi diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2 Radial Distribution Function (RDF) . . . . . . . . . . . . . . . . . . 14
I Fabrication of nanopillar arrays and their applications 17
3 Introduction 19
3.1 The basic principle of antireflective surfaces . . . . . . . . . . . . . . . . . . 19
3.2 Cellular response to nanoscale topography . . . . . . . . . . . . . . . . . . . 22
3.3 Block copolymer micelle nanolithography (BCML) . . . . . . . . . . . . . . 23
4 Materials & methods 27
4.1 Fabrication of nanopillar arrays for antireflective surface applications . . . . 27
4.1.1 Synthesis of particle seeds inside the micellar cores . . . . . . . . . . 27
4.1.2 Nanoparticle enlargement by electroless deposition using hydroxy-
lamine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.3 Reactive Ion Etching (RIE) for the fabrication of high aspect ratio
nanopillars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Synthesis of nanopillar arrays with gold on top for biological applications . 29
4.2.1 Synthesis of gold nanoparticle arrays . . . . . . . . . . . . . . . . . . 29
4.2.2 Light-assisted nanoparticles enlargement . . . . . . . . . . . . . . . . 29
4.2.3 RIE for fabrication of cone-shaped nanopillars . . . . . . . . . . . . 29
vvi Contents
5 Nanopillar arrays 31
5.1 Fabrication of gold nanoparticle etching masks by BCML . . . . . . . . . . 31
5.2 Quartz vs. glass nanopillars . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3 Influence of the etching parameters on nanopillar profiles . . . . . . . . . . 38
5.4 Silica nanopillar with gold on top . . . . . . . . . . . . . . . . . . . . . . . . 41
6 Applications 47
6.1 Antireflective surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2 Biological application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7 Conclusions & Outlook 53
II Fabrication of particle and nanopore arrays and their applications 57
8 Introduction 59
8.1 Electrochemical biosensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.2 Colloidal lithography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
9 Materials & methods 65
9.1 Sensor chip fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
9.2 Colloidal lithography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
9.3 Particle size reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
9.4 Particle removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
9.5 Reactive Ion Etching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
10 Fabrication of particle and nanopore arrays 69
10.1 Particle arrays by colloidal lithography . . . . . . . . . . . . . . . . . . . . . 69
10.2 Tunable size of particle mask arrays . . . . . . . . . . . . . . . . . . . . . . 72
10.3 Nanoporous thin gold layers . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
10.4 Deep nanopore arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
11 Application 81
11.1 Electrochemical biosensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
11.2 Functionalization of nanopores . . . . . . . . . . . . . . . . . . . . . . . . . 84
12 Conclusions & outlook 87
III Porous silicon photonic crystal display 89
13 Introduction 91
13.1 Porous silicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
13.1.1 Fabrication of porous silicon. . . . . . . . . . . . . . . . . . . . . . . 91
13.1.2 Reflectivity of porous silicon . . . . . . . . . . . . . . . . . . . . . . 93
13.2 Porous silicon photonic crystals . . . . . . . . . . . . . . . . . . . . . . . . . 94
13.2.1 Porous silicons display . . . . . . . . . . . . . . . . . . . . . . . . . . 95Contents vii
14 Materials & methods 97
14.1 Electrochemical etching (first layer - photonic crystal) . . . . . . . . . . . . 97
14.2 Surface modification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
14.3 Electrochemical etching (second layer) . . . . . . . . . . . . . . . . . . . . . 98
14.4 Silver impregnation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
14.5 Electrochemical cell experiment . . . . . . . . . . . . . . . . . . . . . . . . . 99
14.6 Reflectivity measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
14.7 Fourier-Transform Infrared spectroscopy . . . . . . . . . . . . . . . . . . . . 100
15 Porous silicon photonic crystal displays 101
15.1 Preparation of porous silicon photonic crystal displays . . . . . . . . . . . . 101
15.2 Performance of photonic crystal display . . . . . . . . . . . . . . . . . . . . 108
16 Conclusions & outlook 111
List of figures 113
Bibliography 123
Acknowledgements 141
IV Appendix 143
Appendix 145
1 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
2 Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
3 Computing the total surface area of cone-shaped nanostructures . . . . . . 147Summary
Advances in fabrication of nanostructured materials offer the promise of new multifunc-
tional systems. This is owing to the abundance of novel physical, chemical, and biological
properties that can be exhibited, making nanostructured materials a fundamentally excit-
ing and technologically relevant area of research. By manipulating structure and proper-
ties on the nanometer scale, an extensive range of structural and functional applications
become available. Nanostructured materials can achieve alternate functions (i.e., antire-
flection), in addition to nanoscale manipulations of other entities (e.g., cell attachment
platforms, or biosensors). In this work, the fabrication of nanostructured arrays has been
studied and their utility in a number of applications has been demonstrated. This thesis
is divided into three Parts; each Part details the fabrication and applications of one of the
nanostructure types: nanopillars, ordered nanopores and unordered nanopores.
In Part I, the fabrication and applications of nanopillar arrays are discussed. The fabri-
cation of the nanopillar arrays was investigated on diverse substrates using a combination
ofmethods: blockcopolymermicellelithography(BCML),reactiveionetching(RIE),and
particle enlargement techniques. BCML resulted in ordered gold nanoparticle arrays with
inter-particle spacing which was modified from 50 to 120 nm. The gold nanoparticles sub-
sequently acted as an etching mask during RIE, which removed the surrounding material
resultinginthe’nanopillar’structures. Anintermediatesteptoenlargethegoldnanoparti-
cleswasnecessaryforproducinghigheraspectrationanopillarsandproducinggold-topped
nanopillars (where the initial gold particle was not completely etched away during RIE).
The employment of this combination of techniques, in addition to the different substrate
materials, resulted in a vast variety of nanostructure profiles, e.g., conical structures on
glass and cylindrical structures on quartz. It was deter