Extraction of information from the dynamical activities of neural networks [Elektronische Ressource] / von David Rotermund

icon

293

pages

icon

English

icon

Documents

2007

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

293

pages

icon

English

icon

Documents

2007

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Universität BremenExtraction of information from thedynamical activities of neural networksDavid RotermundSeptember 2007iiExtraction of information from thedynamical activities of neural networksVom Fachbereich fur¨ Physik und Elektrotechnikder Universit¨ at Bremenzur Erlangung des akademischen Grades einesDoktor der Naturwissenschaften (Dr. rer. nat.)genehmigte DissertationvonDipl. Phys. David Rotermundaus Delmenhorst1. Gutachter: Prof. Dr. rer. nat. Klaus Pawelzik2. Gutachter: Prof. Dr. rer. nat. Andreas KreiterEingereicht am: 11. September 2007Datum des Kolloquiums: 29. November 2007iiiiiAbstractInteracting with our dynamic environment requires to process huge amounts of sensorydata in short time. This incoming stream of information is combined with internalstates (e.g. memories or intentions) and results in actions. The fundamental mech-anisms behind this fast information processing are still not understood. Even howinformation is stored in, and transmitted with sequences of action potentials is stillunder heavy debate. This thesis provides novel ideas to accomplish fast informationprocessing, to understand adaptive coding strategies, and to perform unsupervised on-line learning of non-stationary representations.In its first, genuinely theoretical part (chapter 3 - Information Processing Spike bySpike) this thesis develops a new concept in the field of fast information processingwith single action potentials.
Voir icon arrow

Publié par

Publié le

01 janvier 2007

Langue

English

Poids de l'ouvrage

10 Mo

ersitätUniv

Extractiondynamical

vidDa

Bremen

aofctivitiesinformationofneuralfromnettheworks

undotermR

bSeptem

re

2007

ii

dynamicalExtractionaofctivitiesoinformationfneuralfromnetwtheorks

VomFachbereichf¨urPhysikundElektrotechnik

derUniversit¨atBremen

zurErlangungdesakademischenGradeseines
DoktorderNaturwissenschaften(Dr.rer.nat.)

rtationesDisgenehmigte

nvoDipl.Phys.DavidRotermund

elmenhorstDaus

1.Gutachter:Prof.Dr.rer.nat.KlausPawelzik

2.Gutachter:Prof.Dr.rer.nat.AndreasKreiter

Eingereichtam:11.September2007

DatumdesKolloquiums:29.November2007

ii

Abstract

iii

Interactingwithourdynamicenvironmentrequirestoprocesshugeamountsofsensory
datainshorttime.Thisincomingstreamofinformationiscombinedwithinternal
states(e.g.memoriesorintentions)andresultsinactions.Thefundamentalmech-
anismsbehindthisfastinformationprocessingarestillnotunderstood.Evenhow
informationisstoredin,andtransmittedwithsequencesofactionpotentialsisstill
underheavydebate.Thisthesisprovidesnovelideastoaccomplishfastinformation
processing,tounderstandadaptivecodingstrategies,andtoperformunsupervisedon-
linelearningofnon-stationaryrepresentations.
Initsfirst,genuinelytheoreticalpart(chapter3-InformationProcessingSpikeby
Spike)thisthesisdevelopsanewconceptinthefieldoffastinformationprocessing
withsingleactionpotentials.Theframeworkisbasedonstochasticgenerativemodels
usingPoissonianspiketrainsasinput.Itiscapableofrealizingarbitraryinput-output
functions,updatinganinternalrepresentationwitheachincomingspike,forperform-
ingcomputationsasfastaspossible.
Leavingthosepurelytheoreticalconsiderationsbehind,thesecondpartofthisthesis
(chapter4-SelectiveVisualAttentioninV4/V1)investigatesprinciplesofadaptive
neuralcodinginrealdata,focusingonthequestionhowaninternalcorticalstate,
evokedbyselectivevisualattention,modifiesinformationprocessinginthebrain.In
collaborationwithmonkeyneuro-physiologistswestudiedtheinfluenceofattention
onthediscriminabilityofvisualstimulithroughtheirneuronalcorrelatesrecordedas
epiduralfieldpotentials.
Thefinalpartinthisthesis(chapter5-StabilizingDecodingAgainstNon-Stationaries)
takesustowardsamedicalapplicationforextractinginternalbrainstatesfromneu-
ronalactivities.Forcontrollingprostheticdeviceswithbrainsignals,reliablealgo-
rithmsforestimatingtheintendedactionsofapersonarerequired.Amethodwas
designedwhichallowstostabilisetheestimatorofaneuro-prosthesisagainstdisrup-
tionsfromnon-stationaritiesinthecharacteristicsofcodingtheintendedactions,and
fromchangesintheirrepresentationsinthemeasuredneuronalcorrelates.
Takentogether,thisthesispresentedthreenewcontributions:
Atheoreticalmethodofprocessinginformationspikebyspikeinafastandefficient
fashion.Thisstudyalsoshowedthatitissufficienttouseneurons,generatingPoisso-
nianspiketrains,forperformingfastandefficientinformationprocessing(Ernstetal.,
2007b).Anewmechanism,producedthroughselectivevisualattention,wasrevealedthatren-
dersinformationaboutdifferentvisualstimuli,representedinγ-bandoscillatoryac-
tivityofneuronalpopulations,moredistinctforanexternalobserverandprobably
forthebrainitself.Italsoshowedthatinternalstatesofthebraincanaltertheneu-
ronalactivitypatterninacomplexmanneranditdemonstratedthatthepowerofthe
γ-bandcontainssignificantinformationaboutvisuallyperceivedshapes(Rotermund
2007a).al.,te

iv

A

mdetho

rmae(lik

describing

2006a).

orf

neuronal-prostheses

apablec

of

protecting

estimators

of

movements)againstnon-stationaries,forthecostofan

the

hismatcm

b

eenwet

the

iendedtn

nda

executed

ctiona

tendedin

ctionsa

errortraex

undRoterm(

ignals

et

al.,

sttenCon1Introduction1
2TheoreticalandBiologicalBackground7
2.1Encodinginformationintosequencesofactionpotentials........7
2.2Reconstructinginformationfromsequencesofactionpotentials....12
2.2.1Probabilities.............................13
2.2.2Informationmeasuresandlossfunctions.............16
2.2.3Propabilitybasedestimators....................20
2.2.4Discriminationandclassification.................25
2.3Modelingofneurons............................35
2.3.1Measuringneuronalresponses...................36
2.3.2Integrate-and-fireneurons.....................37
2.4Learningandusing(neuronal)networks.................42
2.4.1Feedforwardnetworks.......................43
2.4.2Bayesiannetworks.........................46
2.4.3MonteCarlomethodsandexpectationmaximisationalgorithm49
2.4.4Reinforcementlearning......................54
3InformationProcessingSpikebySpike59
3.1Motivation..................................59
i

ii

NTENTSCO

3.2ASpike-BasedGenerativeModel.....................
3.2.1BasicModel.............................
3.2.2FromPoissontoBernoulliProcesses...............
3.2.3FromDeterministictoProbabilisticDecomposition.......
3.2.4EstimationandLearningSpikebySpike.............
3.2.5Simplifiedalgorithmwithbatchlearning.............
3.3Results....................................
3.3.1ASimpleExample.........................
3.3.2Pre-Processing,Training,andClassification...........
3.3.3Booleanfunctions..........................
3.3.4HandwrittenDigits.........................
3.3.5HierarchicalNetworks.......................
3.3.6Stepstowardbiologicalplausibility................
3.3.7Artificialandnaturalimages....................
3.4SummaryandDiscussion.........................

4SelectiveVisualAttentioninV4/V1
4.1Motivation..................................
4.2Thevisualsystem..............................
4.2.1Retina................................
4.2.2Pathwaystoandthroughthevisualcortex............
4.2.3Visualattention..........................
4.3ExperimentalSetting,PreparationsandMethods............
4.3.1Theexperimentalsetting......................
4.3.2DataPreprocessing.........................
4.3.3DiscriminatingStimuliwithSVMs................

363636466586960717274757679889

103301601601701311611611911121

NTENTSCO

iii

4.4Results....................................122
4.4.1Discriminatingshapes.......................122
4.4.2Improvementofclassificationperformancesthroughattention.127
4.4.3Stimulus-specificsignalsandcoding................132
4.4.4Attentioninducedstimulus-specificsignalschanges.......135
4.4.5AttentioneffectsinV1.......................143
4.4.6Modellingstimulus-specificsignals.................146
4.4.7DiscriminatingtheAttentionalCondition.............152
4.4.8AttentiononMorphingShapes..................157
4.5SummaryandDiscussion..........................164

5StabilizingDecodingAgainstNon-stationaries
5.1Motivation............................
5.2NeuronalandComputationalBackground..........
5.2.1Motorsystemandmovementsofarms........
5.2.2Errorsignalsinthebrain...............
5.2.3Braincomputerinterfaces...............
5.3Themodelforthesimulations.................
5.3.1NeuralEncodingofIntendedMovement.......
5.3.2EstimationofIntendedMovement...........
5.3.3NeuralEncodingofPerceivedError.........
5.3.4Adaptation.......................
5.3.5ChoiceofParameters..................
5.4ResultsfromtheSimulations..................
5.5ConclusionandSummary...................

..............................................................................

169961071071571971481681781881981291391891

iv

onclusionCandSummary6

AAdditionalBackground
A.1Modelingofneurons............................
A.1.1HodgkinandHuxleymodel....................
A.1.2McCullochandPittsneurons...................
A.2Propabilitybasedestimators........................
A.2.1Minimummeansquarederrorestimator.............
A.2.2Linearminimummeansquarederrorestimator.........
A.3Recurrentnetworks............................
A.3.1Hopfieldnetworks..........................
A.3.2Boltzmannmachines........................
A.3.3Liquidstatemachine........................
A.4Generativemodels.............................
A.4.1HiddenMarkovmodel.......................
A.4.2Helmholtzmachines........................

NTENTSCO

203

213312231512712712022222222422522622622032

BInformationprocessingspikebyspike233
B.1PatternPre-Processing..........................233
B.2TrainingProcedures............................234
B.3ClassificationandComputationProcedures...............234
B.4DetailsandParametersfortheComputationofBooleanFunctions..235
B.5DetailsandParametersfortheClassificationofHandwrittenDigits..235

CStabilizingdecodingagainstnon-stationaries
C.1Theestimatorforthevelocity.......................
C.2Parameteradaptation...........................

237273932

NTENTSCO

dditionalAD

tuteraiLre

ionsublicatP

information

Acknowledgment

nslaufeLeb

/

sources

anksagungD

v

241

241

275

279

281

vi

NTENTSCO

1Chapter

ductiontroIn

Standinginthekitchenwhilecuttingvegetables,observingcookingpots,andtelephon-
inginparallelisanormalsceneinourdailylives.Inthisbusysituationaglassfilled
withwaterismovedaccidentallyovertheedgeofthetableandfallstowardthefloor.
Beforehittingtheground,theglassiscaughtbyafastarmmovement.Thiseveryday
situation,inwhichevenso

Voir icon more
Alternate Text