Dispositif correcteur de facteur de puissance à base de super-condensateur pour variateur de vitesse, Ultra-capacitor based regenerative energy storage and power factor correction device for controlled electric drives

icon

230

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

230

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Sous la direction de Philippe Le Moigne
Thèse soutenue le 09 juillet 2010: Ecole Centrale de Lille
Les variateurs de vitesse modernes sont exclusivement basés sur l’utilisation de moteurs triphasés alimentés par des onduleurs à modulation de largeur d’impulsion (MLI). La plupart des applications modernes de la variation de vitesse, comme les ascenseurs, les grues et les machines-outils sont caractérisées principalement par un rapport élevé entre la puissance crête et la puissance moyenne et une forte demande de freinage à la puissance nominale. Dans les variateurs de vitesse ordinaires, l’énergie de freinage, qui est de l’ordre de 30 à 50% de l’énergie consommée, est dissipé dans une résistance. Outre les problèmes « énergétiques », les interruptions et dégradations de la tension d’alimentation ainsi que la qualité du courant d’entrée et la fluctuation de la charge, sont d’autres questions à aborder et à résoudre.Le super-condensateur dédié aux applications de conversion de puissance est ainsi proposé. Un variateur de vitesse équipé avec des super-condensateurs est présenté dans la thèse. Les super-condensateurs, interconnectés par un convertisseur DC-DC sont utilisés pour stocker et ré-injecter l'énergie de freinage. De plus, le convertisseur DC-DC contrôle le courant du redresseur et la tension du bus DC. Le THD du courant d’entrée est ramené à 30%. La tension du bus DC est élevée et en permanence contrôlée et lissée indépendamment de la charge et de la variation de la tension réseau. Pour terminer, les pics de puissance peuvent être lissés. La solution présentée est analysée théoriquement et vérifiée par un ensemble de simulations et expérimentations. Les résultats sont présentés et commentés
-Variateur de vitesse
-Super condensateurs
-Stockage d'énergie
-Efficacité énergétique
-Microcoupure de réseau
-Correction de facteur de puissance
-Distorsion harmonique totale
Modern controlled electric drives are exclusively based on three-phase motors that are fed from three-phase pulse width modulated (PWM) inverters. Most of modern controlled electric drive applications, such as lifts, cranes and tooling machines are characterized by high ratio of the peak to average power, and high demand for braking at the rated power. In ordinary drives, the braking energy, which represents 30-50% of the consumed energy, is dissipated on a braking resistor. Apart from the “energetic” issue, the mains interruption and degradation, the input current quality and the load fluctuation are additional issues to be addressed and solved.The ultra-capacitor dedicated for power conversion applications has been discussed. In comparison to electrochemical batteries, the ultra-capacitors have higher power density and efficiency, longer life time and greater cycling capability. This makes the ultra-capacitor an excellent candidate for power conversion applications.A new electric drive converter equipped with the ultra-capacitor is presented in the dissertation. The ultra-capacitor with an inter-connection dc-dc converter is used to store and recover the drive braking energy. Moreover, the dc-dc converter controls the rectifier current and the dc bus voltage. The drive input current THD is reduced to 30%. The dc bus voltage is boosted and controlled constant and ripple free regardless on the load and the mains voltage variation. Moreover, the drive input peak power can be smoothed. The presented solution is theoretically analysed and verified by set of simulations and experiments. The results are presented and discussed
-Controlled electric drives
-Super-capacitors
-Energy storage
-Energy efficiency
-Ride-through
-Power factor correction
-Total harmonic distorsion
Source: http://www.theses.fr/2010ECLI0009/document
Voir icon arrow

Publié par

Nombre de lectures

32

Langue

English

Poids de l'ouvrage

10 Mo


N°d’ordre: 125 ECOLE CENTRALE DE LILLE

THESE
présentée en vue
d’obtenir le grade de

DOCTEUR
en
Spécialité : Génie Electrique
Par
Petar J. GRBOVI]

DOCTORAT DELIVRE PAR L’ECOLE CENTRALE DE LILLE

Dispositif correcteur de facteur de puissance à base de
super-condensateur pour variateur de vitesse


Soutenue le 09 Juillet 2010 devant le jury d’examen:

Rapporteur Johann Walter KOLAR Professeur Swiss Federal Institute of
Technology (ETH), Zurich
Rapporteur Jean-Paul FERRIEUX Professeur G2ELAB, Grenoble
Membre Thierry MEYNARD Directeur de LAPLACE, Université de
Toulouse III, Toulouse
Recherche CNRS
Membre Philippe DELARUE Maître de Conférences L2EP, Polytech'Lille, Lille
Patrick Maître de Conférences L2EP, Ecole Centrale de Membre
BARTHOLOMEUS Lille, Lille
Directeur de Philippe LE MOIGNE Professeur L2EP, Ecole Centrale de
thèse Lille, Lille
Membre invité Michel ARPILLIERE Schenider Toshiba Inverter
Thèse préparée au Laboratoire d’Electrotechnique et d’Electronique de Puissance (L2EP)
Ecole Doctorale SPI 072
tel-00585405, version 1 - 12 Apr 2011



tel-00585405, version 1 - 12 Apr 2011







Ultra-capacitor based regenerative energy
storage and power factor correction device for
controlled electric drives


Petar J. Grbovi}




PhD Dissertation
Laboratoire d’Electrotechnique et d’Electronique de Puissance (L2EP)
Ecole Doctorale SPI 072,
ECOLE CENTRALE DE LILLE, LILLE

th
July 9 2010



tel-00585405, version 1 - 12 Apr 2011
ACKNOWLEDGEMENTS
I wish to express my gratitude to the dissertation supervisor, Professor Philippe Le
Moigne for giving me an opportunity to start my dissertation with L2EP. I appreciate his
patience and time he spent to read my fifteen-pages long IEEE Transaction “essays”.
I would like to thank to Professor Johann Walter Kolar from Swiss Federal Institute of
Technology (ETH), Zurich, Professor Jean-Paul Ferrieux from The University of Grenoble
and Thierry Menyard from The University Toulouse III for accepting to review the
dissertation report and be members of the dissertation committee.
Especially, I would like to express my deep gratitude to associat Professor Philippe
Delarue for all creative and fruitful discussions we had together during those two and half
years. He was an excellent co-authors and reviewer of all journal papers we wrote together.
Also I wish to thank to associat Professor Patrick Bartholomeus, co-supervisor of my
dissertation.
This project and dissertation would not be possible without support of Dr. Philippe
Baudesson and R&D depertment of Schneider Toshiba Inverter, Pacy sur Eure.
I offer my deepest gratitude to my family and particularly to my wife Jelana and
mother Stojka for their love and support and for their confidence in me.
Finally, let me express my deepest gratitude to God for His blessing.



i
tel-00585405, version 1 - 12 Apr 2011
TABLE OF CONTENTS
Acknowledgements i
Table of Contents ii
PART ONE: Introduction and General Considerations of the Dissertation 1
1. General Introduction 2
1.1. Background 2
1.1.1. Short History of Electric Drives 2
1.1.2. Present 3
1.1.3. Typical Applications of Controlled Electric Drives 4
1.1.4. Remaining Technical Issues in Application of Controlled Electric Drives 5
1.2. Literature Overview 7
1.2.1. Regenerative Drives Based on Back to Back and Matrix Converter 7
1.2.2. Regenerative Drives Based on the Energy Storage Concept 8
1.2.3. The Mains Current Harmonics and Related Issues 10
1.2.4. Smoothing of the Input Peak Power 12
1.3. The Dissertation Objective 12
1.3.1. Parallel Connection of Energy Storage Device and Controlled Electric Drive 12
1.3.2. The Mains Current Harmonics, DC Bus Voltage Control and Single Phase Supply 12
1.3.3. Energy Storage and Power Factor Correction Device for Electric Drive Applications 13
1.4. The Dissertation Organization 13
1.4.1. Part One: General Introduction 13
1.4.2. Part Two: Parallel Connected Energy Storage Device for Controlled Electric Drives 13
1.4.3. Part Three: Three-terminal Power Factor Correction and Voltage Control Device 14
1.4.4. Part Four: Three-terminal Energy Storage and PFC Device for Controlled Electric Drives 14
1.4.5. Part Five: Concluding Remarks and Conclusions 15
PART TWO: Parallel Connected Energy Storage Device for Controlled Electric
Drives 16
2. An Ultra-Capacitor as Energy Storage Device for Power Conversion
Applications 17
2.1. The Ultra-Capacitors 17
2.1.1. Short History of the Ultra-capacitors 17
2.1.2. Overview of Different Technologies 18
2.1.3. Electric Double Layer Capacitors -EDLC 18
2.2. The Ultra-capacitors Macro (Electric Circuit) Model 20
2.2.1. Full Theoretical Model 20
2.2.2. Simplified Model 25
2.2.3. The Ultra-capacitor Energy Capacity 26
2.3. The Ultra-capacitor Charge/Discharge Methods 27
2.3.1. Constant Resistive Load 27
2.3.2. Constant Current 27
2.3.3. Charging 28
2.3.4. Constant Power 29
2.4. Frequency Related Losses 30
2.4.1. How to Calculate Total Losses in Case that the ESR is a Function of Frequency? 31
2.4.2. The Current is Periodic Function 31
2.4.3. The Current is Non-periodic Function 34
2.5. Trends in the Ultra-capacitors Development 35
ii
tel-00585405, version 1 - 12 Apr 2011
2.6. Short Conclusion 36
3. Ultra-Capacitor Based Regenerative Electric Drives 38
3.1. Background 38
3.2. Operational Modes 39
3.2.1. Definition of the Reference Voltages 41
3.2.2. Some Experimental Waveforms 42
3.3. Ultra-capacitor Selection and Design 44
3.3.1. Voltage Rating 45
3.3.2. The Capacitance 45
3.3.3. Current Stress and Losses 46
3.3.4. Conversion Efficiency 48
4. Three-Level Interface DC-DC Converter 51
4.1. Background and State of the Art 51
4.2. Three-Level DC-DC Converter 51
4.2.1. Analysis 53
4.2.2. Filter Inductor L 55 C0
4.2.3. Filter Capacitors C , C 57 B1 B2
4.3. Design and Selection of the Active Components 60
4.3.1. Advanced Semiconductor Switches 60
4.3.2. Voltage Rating 60
4.3.3. Conduction and Switching Losses 61
4.4. The DC-DC Converter Design Example 62
5. Modeling Aspects and Control Scheme 68
5.1. Modelling Techniques 68
5.2. The DC-DC Converter Model 71
5.2.1. Large Signal Model 71
5.2.2. Linearization and Small Signal Model 72
5.3. The DC Bus Circuit Model 74
5.3.1. A General Case 74
5.3.2. PWM Inverter fed Variable Speed Drives as DC bus load 75
5.4. The Entire Conversion System Model 76
5.4.1. Large Signal Model 76
5.4.2. Linearization and Small Signal Model 77
5.4.3. Discussion on the Model 79
5.5. Control Scheme 79
5.5.1. The Control Objectives 79
5.5.2. Control of the Ultra-capacitor Current and Voltage Balancing Error 80
5.5.3. The Ultra-capacitor and the DC Bus Voltage Control 81
5.5.4. The Controller(s) Synthesis 84
5.5.5. Simulation and Experimental Results 90
5.5.6. Discussion on the Current Controller Response Time and the DC Bus Voltage Control 92
6. Discussion and Conclusions 94
6.1. Concept of the Ultra-capacitor Based Controlled Electric Drive 94
6.1.1. The Drive Immunity on the Mains Power Interruption 94
6.1.2. The Drive Cost Comparison 94
6.2. Interface DC-DC Converter 95
6.2.1. Semiconductors Switches 95
6.2.2. Passive Components 96
6.2.3. Conversion Losses 98
6.2.4. Model and Control Scheme 99
6.3. Conclusions 100
PART THREE: Three-Terminal Power Factor Correction Device 102
iii
tel-00585405, version 1 - 12 Apr 2011
7. Background and State of the Art 103
7.1. Background 103
7.2. State of the Art 103
7.3. A Novel Half-DC-Bus-Voltage Rated Boost Rectifier 104
8. Hybrid Half-DC-Bus-Voltage Rated Boost Rectifier 106
8.1. The Basic Principle 106
8.1.1. The LFT Realization 107
8.1.2. The Mains Current Quality 111
8.2. The DC-DC1 Converter 113
8.2.1. Analysis 114
8.2.2. Design Aspects 116
8.3. The DC-DC2 Converter 120
8.3.1. Analysis 120
8.3.2. Design Aspects 124
8.4. A Design Example 126
9. Modeling Aspects and Control Scheme 129
9.1. Model of Series Resonant Converter 129
9.2. The Entire Rectifier Model 133
9.2.1. Large Signal Model 133
9.2.2. Linearization and Small Signal Model 135
9.2.3. Matlab/Simulink Model Verification 136
9.3. Control Scheme 137
9.3.1. The Control Objective 137
9.3.2. The DC Bus Voltage Controller 137
9.3.3. Matlab/Simulink Simulation Results 140
9.3.4. Experimental Results 141
10. Single Phase Operation 144
10.1. Short Introduction 144
10.2. Single Phase Operation of the Half-DC-Bus-Voltage Rated Boost Rectifier 145
10.2.1. The Principle 145
10.2.2. A Short Analysis 147
10.3. The DC-DC1 Converter under Single Phase Supply 150
10.3.1. An Ideal Circuit Analysis 150
10.3.2. The Mains Diode Commutation Effect 151
10.3.3. The Switc

Voir icon more
Alternate Text