208
pages
English
Documents
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Découvre YouScribe et accède à tout notre catalogue !
Découvre YouScribe et accède à tout notre catalogue !
208
pages
English
Documents
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
oN d’ordre : 3916
`THESE
´ ´ `PRESENTEE A
´L’UNIVERSITE BORDEAUX I
´ ´ECOLE DOCTORALE DE MATHEMATIQUES ET
D’INFORMATIQUE
Par Hayssam SOUEIDAN
POUR OBTENIR LE GRADE DE
DOCTEUR
´ ´SPECIALITE : INFORMATIQUE
Discrete event modeling and analysis for
Systems Biology models
Soutenue le : 4 D´ecembre 2009
Apr`es avis des rapporteurs :
Hidde DE JONG ..... Directeur de recherche INRIA
Olivier ROUX ........ Professeur
Devant la commission d’examen compos´ee de :
Bedreddine AINSEBA Professeur ................... Examinateur
Andr´e ARNOLD ..... Professeur ................... Membre Invit´e
Gilles BERNOT ...... Professeur ................... Examinateur
Hidde DE JONG ..... Directeur de recherche INRIA Rapporteur
Macha NIKOLSKI ... Charg´ee de recherche ........ Co-directrice
Olivier ROUX ........ Professeur ................... Rapporteur
David SHERMAN ... Directeur de recherche INRIA Directeur de th`ese
Gr´egoire SUTRE ..... Charg´e de recherche ......... Co-directeur
2009Abstract
A general goal of systems biology is to acquire a detailed understanding of the dynamics of
livingsystemsbyrelatingfunctionalpropertiesofwholesystemswiththeinteractionsoftheir
constituents. Often this goal is tackled through computer simulation. A number of different
formalisms are currently used to construct numerical representations of biological systems,
and a certain wealth of models is proposed using ad hoc methods. There arises an interesting
question of to what extent these models can be reused and composed, together or in a larger
framework.
In this thesis, we propose BioRica as a means to circumvent the difficulty of incorporating
disparate approaches in the same modeling study. BioRica is an extension of the AltaRica
specification language to describe hierarchical non-deterministic General Semi-Markov pro-
cesses. WefirstextendthesyntaxandautomatasemanticsofAltaRicainordertoaccountfor
stochastic labeling. We then provide a semantics to BioRica programs in terms of stochastic
transition systems, that are transition systems with stochastic labeling. We then develop nu-
merical methods to symbolically computethe probabilityof a given finitepathina stochastic
transition systems.
We then define algorithms and rules to compile a BioRica system into a stand alone C++
simulator that simulates the underlying stochastic process. We also present language exten-
sions that enables the modeler to include into a BioRica hierarchical systems nodes that use
numerical libraries (e.g. Mathematica, Matlab, GSL). Such nodes can be used to perform
numerical integration or flux balance analysis during discrete event simulation.
We then consider the problem of using models with uncertain parameter values. Quantita-
tive models in Systems Biology depend on a large number of free parameters, whose values
completely determine behavior of models. Some range of parameter values produce similar
systemdynamics,makingitpossibletodefinegeneraltrendsfortrajectoriesofthesystem(e.g.
oscillating behavior) for some parameter values. In this work, we defined an automata-based
formalism to describe the qualitative behavior of systems’ dynamics. Qualitative behaviors
are represented by finite transition systems whose states contain predicate valuation and
whose transitions are labeled by probabilistic delays. We provide algorithms to automatically
build such automata representation by using random sampling over the parameter space and
algorithms to compare and cluster the resulting qualitative transition system.
Finally,wevalidateourapproachbystudyingarejuvenationeffectinyeastscellspopulation
by using a hierarchical population model defined in BioRica. Models of ageing for yeast cells
aim to provide insight into the general biological processes of ageing. For this study, we
used the BioRica framework to generate a hierarchical simulation tool that allows dynamic
creationofentitiesduringsimulation. Thepredictionsofourhierarchicalmathematicalmodel
has been validated experimentally by the micro-biology laboratory of Gothenburg.
Keywords: Systems biology, Discrete event systems, AltaRica, Cell ageing, General semi-
Markovian processes, Qualitative abstraction
iiiivContents
General introduction xiii
I Background 1
1 From truth to lies: A journey through mathematical modeling for biol-
ogy 3
1.1 What is modeling? What is a system? . . . . . . . . . . . . . . . . . . . . . 3
1.1.1 Scientific method and modeling: the principle of abduction . . . . . 4
1.1.2 From abduction to soundness: Chamberlain’s multiple hypothesis
testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Utility of mathematical models . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 Models as means to deal with biological complexity . . . . . . . . . 6
1.2.2 Use of mathematical models . . . . . . . . . . . . . . . . . . . . . . 7
1.2.3 Misuse of mathematical models . . . . . . . . . . . . . . . . . . . . 8
1.3 How do we model? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.1 Mathematical model formulation . . . . . . . . . . . . . . . . . . . . 10
1.3.2 Hierarchical systems: from molecular to systems biology . . . . . . 11
1.3.3 Randomness in biology . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Model (in)validation for biology . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2 Modeling formalisms 17
2.1 Discrete and finite models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.1 Finite Automata, transition systems . . . . . . . . . . . . . . . . . . 17
2.1.2 Composition of labeled transition systems. . . . . . . . . . . . . . . 18
2.1.3 Semantics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.4 Variables, Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
vContents
2.2 Constraint automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 The AltaRica formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Probabilities and measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.1 General measures and Borel spaces . . . . . . . . . . . . . . . . . . 25
2.4.2 Random variables and Probability distribution functions . . . . . . 26
2.4.3 Joint distribution functions . . . . . . . . . . . . . . . . . . . . . . . 27
2.5 Stochastic processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.1 Discrete Time Markov Chains . . . . . . . . . . . . . . . . . . . . . 29
2.5.2 Exponential distribution . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5.3 Continuous time Markov chains . . . . . . . . . . . . . . . . . . . . 30
2.6 Discrete Event Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.7 Mathematical modeling of biological systems . . . . . . . . . . . . . . . . . 32
2.7.1 Biochemical reaction networks . . . . . . . . . . . . . . . . . . . . . 32
2.7.2 Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.7.3 Mass action stochastic kinetics . . . . . . . . . . . . . . . . . . . . . 33
II Modeling 39
3 The BioRica language 41
3.1 BioRica node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.1.1 Abstract syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.1.2 Transition semantics. . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Node semantics in terms of stochastic mode automata . . . . . . . . . . . . 47
3.3 Compositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.1 Parallel composition . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.2 Flow connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.3 Event synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4 BioRica systems syntax and semantics . . . . . . . . . . . . . . . . . . . . . 57
3.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4 Stochastic semantics 59
4.1 Stochastic Transition System . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.1.1 Stochastic Mode Automata Semantics . . . . . . . . . . . . . . . . . 60
4.2 Underlying stochastic process . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.1 General state space Markov chains . . . . . . . . . . . . . . . . . . . 61
4.2.2 Paths and sojourn paths . . . . . . . . . . . . . . . . . . . . . . . . 62
vi4.2.3 Paths as realizations of a stochastic process . . . . . . . . . . . . . . 63
4.3 Finite dimensional measures of the underlying stochastic process . . . . . . 64
4.3.1 Overview of the method. . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3.2 Probability of a sojourn path in STS : Accounting for immediate1
transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3.3 Probability of a sojourn path of STS : Accounting for non deter-2
minism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3.4 Probability of a sojourn path of STS : Accounting for one step3
timed transitions with continuous delays . . . . . . . .