130
pages
English
Documents
2010
Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres
130
pages
English
Documents
2010
Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres
Publié par
Publié le
01 janvier 2010
Nombre de lectures
31
Langue
English
Poids de l'ouvrage
5 Mo
Publié par
Publié le
01 janvier 2010
Langue
English
Poids de l'ouvrage
5 Mo
Development of Hydrogen Storage Systems
using Sodium Alanate
Vom Promotionsausschuss der
Technischen Universität Hamburg-Harburg
zur Erlangung des akademischen Grades
Doktor Ingenieur (Dr.-Ing.)
genehmigte Dissertation
von
Gustavo Adolfo Lozano Martinez
aus
Bogotá, Kolumbien
2010
Vorsitzender des Prüfungsausschusses: Prof. Dr. J. Weißmüller
1. Gutachter: Prof. Dr. R. Bormann
2. T. Klassen
3. Gutachter: Prof. Dr. G. Schneider
Tag der mündlichen Prüfung: 6.12.2010
urn:nbn:de:gbv:830-tubdok-10803
Acknowledgements
To all Professors, tutors and teachers, to my colleagues, my friends and all of my family, who both
directly and indirectly inspired, shared and encouraged my desire to work in this doctoral thesis, to all
and every one of you my grateful acknowledgement and sincere thanks.
I want to express my thanks to Prof. Rüdiger Bormann for his guidance and advice, for the
constructive periodic discussions, from which I learned how to develop a deeper phenomenological
perspective and how to separate objective observations from subjective points of view.
Especially I want to express my deep gratitude to Dr. Martin Dornheim for his friendly and direct
supervision and his support during all my PhD work at the Department of Nanotechnology at the
GKSS Research Centre (today Helmholtz-Zentrum Geesthacht). I want to thank him for believing in
my ideas, my work and my character. Thanks for promoting that pleasant work atmosphere in the
department, which has achieved amazing results as it will continue for sure.
I would like to thank as well Prof. Thomas Klassen not only for his role as reviewer and evaluator of
my thesis but also for his former work and energy invested in the development of the department of
Nanotechnology, encouraging the research from new scientists in the field of hydrogen technology.
For all the help and collaboration during my work on modelling and simulation I would like to give a
special acknowledgement to Prof. Georg Fieg, Prof. Jobst Hapke, Dr. Chakkrit Na Ranong and all the
staff of the Institute of Process and Plant Engineering at the Hamburg University of Technology. I
appreciate very much the collaboration of Dr. Na Ranong, the long discussion times and his invaluable
feedback and friendly advice.
Many of the results of my research would not have been possible without the collaboration of the
students from the Helmut Schmidt University: Stefan Walcker-Mayer, Stephan Dorn and Daniel
Meyer, and from the DAAD Rise Program: Daniel Martin-Alarcon, Simon Thompson and Craig
Holvey. I appreciate the financial support of the European Community in the frame of the Integrated
Project “NESSHY—Novel Efficient Solid Storage for Hydrogen” and of the Helmholtz Initiative
“FuncHy—Functional Materials for Mobile Hydrogen Storage”.
At the department of Nanotechnology I was lucky to work under a constant motivating and friendly
atmosphere, which made every day a very nice experience. My thanks to all current and former
outstanding colleagues: Ulrike Bösenberg (my phenomenal office mate), Dr. José Bellosta von Colbe
(for his nice support and suggestions), Oliver Metz, Claudio Pistidda, Julian Jepsen, Christian
Bonatto-Minella, Anna Arendarska, Dr. Rapee Gosalawit, Dr. Ivan Saldan, Dr. Klaus Taube, Dr.
Karina Suárez, Christian Horstmann, Dr. Michael Störmer, Dr. Gagik Barkhordarian, Julian Puszkiel,
Fahim Karimi, Sabine Schrader, Liane Bellosta von Colbe and Prof. Michael Dahms. I am very
thankful to Dr. Nico Eigen for the initial supervision and introduction to the topic of complex hydrides
during the early stage of my thesis.
I thank my parents, Gustavo and Julia, for their commitment in my education and the freedom I
enjoyed in having independent ideas. I thank also my brother and sister, Gabriel y Cristina, for their
constant patience and moral support in my life.
This dissertation is dedicated above all to my lovely wife Gabriela, who is and was my inspiration and
strength during all this time, who changed my life for good and whom I owe the successful and
peaceful development, writing and finish of this thesis. Muchas gracias Gaby.
Geesthacht, December 2010
Contents
1 INTRODUCTION ....................................................................................................................................... 1
1.1 HYDROGEN AS SOLAR ENERGY CARRIER............................................................................................... 1
1.2 HYDROGEN STORAGE: METAL HYDRIDES AS HIGH DENSITY ALTERNATIVE ........................................... 2
1.3 SCOPE AND STRUCTURE OF THE PRESENT WORK ................................................................................... 5
1.4 MODEL SYSTEM: SODIUM ALANATE...................................................................................................... 7
2 EXPERIMENTAL METHODS ................................................................................................................. 9
2.1 MATERIAL PREPARATION...................................................................................................................... 9
2.2 SORPTION KINETICS ............................................................................................................................ 10
2.3 HYDROGEN TANK STATION................................................................................................................. 11
3 EXPERIMENTAL SORPTIONS: KINETICS AND HEAT TRANSFER........................................... 17
3.1 EFFECTS OF HEAT TRANSFER ON THE SORPTION KINETICS................................................................... 17
3.1.1 Absorption in cells of different sizes............................................................................................. 17
3.1.2 Absorptions in the thermocell ....................................................................................................... 18
3.1.3 Estimation of effective thermal conductivity ................................................................................ 18
3.1.4 Addition of expanded graphite.... 20
3.1.5 Discussion ..................................................................................................................................... 21
3.2 EMPIRICAL KINETIC MODEL OF SODIUM ALANATE REACTING MATERIAL: HYDROGEN ABSORPTION.... 30
3.2.1 Kinetic equations........................................................................................................................... 31
3.2.2 Experimental approach.................................................................................................................. 34
3.2.3 Isobaric and isothermal conditions during measurements............................................................. 35
3.2.4 Hydrogen absorption of NaH+Al to form Na AlH : S S ................................................... 37 3 6 I II
3.2.5 Hydrogen absorption of Na AlH +Al to form NaAlH : S S ............................................ 38 3 6 4 II III
3.2.6 Discussion................ 40
3.2.6.1 Hydrogen absorption of NaH+Al to form Na AlH : S S ....................................................... 40 3 6 I II
3.2.6.2 Hydrogen absorption of Na AlH +Al to form NaAlH : S S ................................................ 42 3 6 4 II III
3.2.6.3 Empirical kinetic model and validation............................................................................................... 43
3.3 EMPIRICAL KINETIC MODEL OF SODIUM ALANATE REACTING MATERIAL: HYDROGEN DESORPTION.... 46
3.3.1 Kinetic equations........................................................................................................................... 47
3.3.2 Experimental approach.................................................................................................................. 47
v
3.3.3 Hydrogen desorption of NaAlH forming Na AlH +Al: S S ........................................... 48 4 3 6 III II
3.3.4 Hydrogen desorption of Na AlH forming NaH+Al: S S .................................................. 49 3 6 II I
3.3.5 Discussion ..................................................................................................................................... 51
3.3.5.1 Hydrogen desorption of NaAlH forming Na AlH +2Al: S S ............................................. 51 4 3 6 III II
3.3.5.2 Hydrogen desorption of Na AlH forming NaH+Al: S S ...................................................... 54 3 6 II I
3.3.5.3 Kinetic model and validation............................................................................................................... 57
3.4 SCALED-UP SORPTIONS ....................................................................................................................... 58
3.4.1 Hydrogenation of Hydralloy C5.................................................................................................... 59
3.4.2 Hydrogenation of sodium alanate material................