151
pages
English
Documents
2004
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Découvre YouScribe en t'inscrivant gratuitement
Découvre YouScribe en t'inscrivant gratuitement
151
pages
English
Documents
2004
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Publié par
Publié le
01 janvier 2004
Nombre de lectures
28
Langue
English
Poids de l'ouvrage
10 Mo
Publié par
Publié le
01 janvier 2004
Nombre de lectures
28
Langue
English
Poids de l'ouvrage
10 Mo
Zentralinstitut für Medizintechnik
Technische Universität München
Development of an implant to treat
gastro-oesophageal reflux disease
Håvard J. Haugen
Vollständiger Abdruck der von der Fakultät für Maschinenwesen der Technischen Universität
München zur Erlangung des akademischen Grades eines
Doktor-Ingenieurs (Dr.-Ing.)
genehmigten Dissertation.
Vorsitzender: Univ.-Prof. Dr.-Ing. Dirk Weuster-Botz
Prüfer der Dissertation:
1. Univ.-Prof. Dr. med., Dr.-Ing. habil. Erich Wintermantel
2. Univ.-Prof. Dr.-Ing. habil. Johann Stichlmair
3. apl.-Prof. Dr. med. habil. Hubertus A. E. J. Feussner
Die Dissertation wurde am 18.06.2004 bei der Technischen Universität München eingereicht und
durch die Fakultät für Maschinenwesen am 24.09.2004 angenommen. Abstract
This study introduces a new method for producing a ring shaped polymer implant, which is to be
placed around the oesophagus and passively support the sphincter. This support should reduce the
amount of gastric juices in the oesophagus for patients with reflux and hence heal the oesophagitis.
Previously, such implants were applied, but failed due to migration along the oesophagus. The
idea was to produce an implant with a porous structure, in which tissue could attach to and grow
into. This would prevent implant migration.
It has been proven that it was possible to produce the desired porous structure on two different
industrial polymer production machine hot pressing and injection moulding, with the novel
technique of using water as a foaming agent. The porous structure was adjustable upon the
processing parameters. This method was utilized to produce a gastro-oesophageal reflux disease
(GORD) implant with a defined pore size distribution. The biocompatible properties of the
material were not greatly altered through the new processing method.
Biocompatible tests and enzymatic degradation studies have proven that the injection moulded
GORD samples performed better. Enzyme degradation products were found to lay within toxic
levels for both machineries. By applying injection moulding process one is also capable of
producing far more implants per unit time compared to hot pressing. Material analysis and cell
toxicity tests revealed that the most desirable sterilisation method was γ-sterilisation with a
minimum dose of 25 kGy. The biocompatibility of the implant was improved by increasing
radiation dose, as residual monomers were bound back into the polymer chain. The concentration
of methylene dianiline (MDA) was measured to be four times higher for steam sterilisation
compared to gamma irradiation of 10 kGy. MDA was undetectable at higher irradiation doses.
-I- Kurzfassung
In dieser Studie wurde eine neue Methode zur Produktion von ringförmiges Implantaten
entwickelt. Dieses Implantat soll Patienten, die an der gastroösophagealen Reflux-Krankheit der
Speiseröhre leiden, in einem minimal-invasiven Eingriff um die Speiseröhre gelegt werden, um
damit passiv den Speiseröhren-Schließmuskel zu unterstützen. Die Menge der Magensäfte in der
Speiseröhre soll damit verringert werden und die Reflux-Krankheit könnte geheilt werden.
Frühere Implantate, die ebenfalls um die Speiseröhre positioniert wurden, sind jedoch entlang der
Speiseröhre verrutscht. Diese Dislokation könnte dadurch verhindert werden, dass
Speiseröhrengewebe in das Implantat hineinwächst. Dafür ist eine poröse Innenschicht notwendig.
Es ist gelungen, die gewünschte poröse Struktur und Prototypen des Implantates herzustellen. Dabei
wurden eine Heißpresse bzw. eine Spritzgussmaschine verwendet. Die Porengröße und Porosität
waren dabei mit den jeweiligen Prozess-Parametern einstellbar. Die biokompatiblen Eigenschaften
des Materials wurden nicht entscheidend durch die neue Methode geändert. Das spritzgegossene
Implantat zeigte höher Biokompatiblitätswerte und waren in einem enzymatischen Abbaustudium
beständiger als die von der Heißpresse hergestellten Proben. Es konnten innerhalb der Toxitätsgrenze
keine Abbauprodukte nachgewiesen werden. Verschiedene Sterilisations-verfahrens hatten keine
messbaren Auswirkungen auf den Werkstoff, jedoch waren Abweichungen in der Zelltoxizität zu
beobachten. Dampfsterilisierte Proben wiesen ein geringes Zellwachstum auf, während auf γ-
sterilisierten Proben mit steigender Strahlungsdosis ein erhöhtes Zellwachstum nachgewiesen werden
konnte. Generell konnten Fibroblasten an das Material adherieren und proliferieren.
-II-
Acknowledgements
The present research work has been carried out during the period of 2002-2004 at the Central
Institute for medical engineering, Garching bei München, Germany.
I would like to express my sincere gratitude to my supervisor Prof. Dr. med. Dr.-Ing. habil E.
Wintermantel for offering me the opportunity to work in this new institute, for supplying a very
interesting PhD topic, state of the art laboratory equipment, electricity to run the machines and for
his cordiality and all the support
My referee Prof. Dr. med Feussner deserves my most sincere thanks for all the support, productive inputs
during the entire project and particularly for contributing with his expertise to this work.
My second referee Prof. Dr-Ing. Stichlmaier also deserves gratitude for helping me out with the
theoretical part of the thesis.
Particular thanks to my tutor Dr. J. Will for her assistance, helpful comments and encouragement
through out the entire project. Her kind nature was not just shown through her mentoring, but also
by running after bandages for sore skiing blisters and fetching ice cream with fresh strawberries on
hot summer days.
I would also like to thank my second tutor, Dr. J. Aigner and Ms U. Hopfner for the entire
supervision of the cell studies and useful comments during the write-up. Dr. Aigner has taught me
to be critical to my own and other researchers` results. He had as well always time for productive
discussions and to give useful tips for publishing scientific papers.
Furthermore, I would like to thank Mrs. S. Schnell for kindly doing successfully SEM images
even though hard working construction machines outside the institute and ill-behaving software
did all they could to prevent the SEM from working.
-III- Acknowledgements
Mr. U Ebner deserves severe gratitude for transforming all CAD drawings into real parts, even
though the drawings were not always complete. His skills were indispensable.
Also, I would like to thank all students, whom without this dissertation would have been
impossible. Their motivation and hard-working mentality gave great inspiration. Their names, in
chronicle order: Ms V. Ried; Mr. H. Schlicht; Mr. C. Wende; Mr. L.C. Gerhardt; Mr. M.
Brummeisl; Mr. M. Galler; Ms. A. Wagner; Mr. M. Brunner; Mr. F. Pellkofer and Mr. W. Fuchs.
Appreciation also is also given to Dr. S. Guber and Mrs. M. Franke at the Institut für Werkstoffe
und Verarbeitung, TU München, for helping out with the EDX analysis.
Special thanks to Sigrid, the Kjuus and the Haugens for their kind understanding and
encouragement throughout the whole work, whom without, I would probably never have been able
to complete this thesis.
And not at least; Mr. A. Rothberg did a superb proof-reading task.
Two teachers at Volda Upper Secondary School, Norway, Mr. C. Hansson and Mr. E. Berg, were the
first ones to bring me true interests into science and engineering. Without their enthusiasm for science
and their support for future studies, there would not have been a scientific career path.
All of the above and many others have contributed substantially in one way or another to thesis. I
express my deepest gratitude and appreciation to all of them.
-IV-
. Table of content
I INTRODUCTION 1
1 GASTRO-OESOPHAGEAL REFLUX DISEASE GORD 1
2 THE NEW PROSTHESIS, THE WORKING HYPOTHESIS 13
II AIM OF THE STUDY 16
III FOAMING THEORY 17
1 INTRODUCTION 17
2 NUCLEATION THEORY 18
3 PORE GROWTH DYNAMICS 21
4 MODEL MODIFICATION 26
IV MATERIALS AND METHODS 30
1 EXPERIMENTAL SETUP 30
2 MATERIALS 33
3 POLYMER PROCESSING 35
4 CHARACTERISATION OF MACRO- AND MICROSTRUCTURES 39
5 THERMAL ANALYSIS 41
6 CHEMICAL ANALYSIS 41
7 MECHANICAL ANALYSIS 45
8 BIOCOMPATIBILITY ANALYSIS 45
9 EFFECTS OF STERILISATION 50
10 DEGRADATION BEHAVIOUR 51
V RESULTS AND DISCUSSION: POLYMER PROCESSING 57
1 THE NEW PROCESSING METHOD 57
2 WATER-UPTAKE RATE 57
3 PROCESSING BY HOT PRESSING 58
4 PROCESSING ON AN INJECTION MOULDING MACHINE 69
VI INFLUENCE UPON STERILISATION: POLYMER PROCESSING 86
1 SPECTROSCOPY ANALYSIS 86
2 GEL PERMEATION CHROMATOGRAPHY 86
3 THERMAL ANALYSIS 87
4 CELL TOXICITY 89
-V- Table of content
VII DEGRADATION BEHAVIOUR: POLYMER PROCESSING 91
1 DEGRADATION DUE TO POLYMER PROCESSIN