Counterions at charged polymers [Elektronische Ressource] / vorgelegt von Ali Naji

icon

183

pages

icon

Deutsch

icon

Documents

2005

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

183

pages

icon

Deutsch

icon

Documents

2005

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Counterions at Charged PolymersAli NajiMunich, 2005Counterions at Charged PolymersAli NajiDissertationder Fakult¨at fu¨r Physikder Ludwig–Maximilians–Universit¨atMu¨nchenvorgelegt vonAli Najigeboren am 11. September 1976 in Karaj (Tehran)Mu¨nchen, August 2005Erstgutachter: Prof. Dr. Roland R. NetzZweitgutachter: Prof. Dr. Joachim O. R¨adlerTag der mu¨ndlichen Pru¨fung: 10. November 2005To my wife–Hoda–,my parents–Masoumeh and Sohrab–,my brothers–Majid and Hamid–,and the memory ofmy grandfather, RazzaghContentsAbstract xiZusammenfassung xiii1 Introduction 12 Counterion at Charged Objects: General aspects 72.1 Length scales in a classical charged system . . . . . . . . . . . . . . . . . . . . 72.1.1 From mean-field to strong-coupling regime . . . . . . . . . . . . . . . . 82.2 Counterion distribution at a charged surface . . . . . . . . . . . . . . . . . . . 102.2.1 Weak-coupling or mean-field regime . . . . . . . . . . . . . . . . . . . 102.2.2 Strong-coupling (SC) regime . . . . . . . . . . . . . . . . . . . . . . . 112.3 The role of curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122.3.1 Binding-unbinding transition of counterions . . . . . . . . . . . . . . . 132.4 Interactions between like-charged surfaces . . . . . . . . . . . . . . . . . . . . 142.4.1 Mean-field regime: Repulsion . . . . . . . . . . . . . . . . . . . . . . . 152.4.2 Strong-coupling regime: Attraction . . . . . . . . . . . . . . . . . . . .
Voir icon arrow

Publié le

01 janvier 2005

Nombre de lectures

42

Langue

Deutsch

Poids de l'ouvrage

7 Mo

Counterions at Charged Polymers
Ali Naji
Munich, 2005Counterions at Charged Polymers
Ali Naji
Dissertation
der Fakult¨at fu¨r Physik
der Ludwig–Maximilians–Universit¨at
Mu¨nchen
vorgelegt von
Ali Naji
geboren am 11. September 1976 in Karaj (Tehran)
Mu¨nchen, August 2005Erstgutachter: Prof. Dr. Roland R. Netz
Zweitgutachter: Prof. Dr. Joachim O. R¨adler
Tag der mu¨ndlichen Pru¨fung: 10. November 2005To my wife–Hoda–,
my parents–Masoumeh and Sohrab–,
my brothers–Majid and Hamid–,
and the memory of
my grandfather, RazzaghContents
Abstract xi
Zusammenfassung xiii
1 Introduction 1
2 Counterion at Charged Objects: General aspects 7
2.1 Length scales in a classical charged system . . . . . . . . . . . . . . . . . . . . 7
2.1.1 From mean-field to strong-coupling regime . . . . . . . . . . . . . . . . 8
2.2 Counterion distribution at a charged surface . . . . . . . . . . . . . . . . . . . 10
2.2.1 Weak-coupling or mean-field regime . . . . . . . . . . . . . . . . . . . 10
2.2.2 Strong-coupling (SC) regime . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 The role of curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Binding-unbinding transition of counterions . . . . . . . . . . . . . . . 13
2.4 Interactions between like-charged surfaces . . . . . . . . . . . . . . . . . . . . 14
2.4.1 Mean-field regime: Repulsion . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 Strong-coupling regime: Attraction . . . . . . . . . . . . . . . . . . . . 16
2.4.3 Rouzina-Bloomfield criterion . . . . . . . . . . . . . . . . . . . . . . . 17
3 Counterion-Condensation Transition (CCT) at Charged Cylinders 19
3.1 Cell model for charged rod-like polymers . . . . . . . . . . . . . . . . . . . . . 21
3.1.1 Dimensionless description . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 CCT as a generic binding-unbinding process . . . . . . . . . . . . . . . . . . . 23
3.2.1 Onsager instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Beyond the Onsager instability . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Mean-field theory for the CCT . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.1 Non-linear Poisson-Boltzmann (PB) equation . . . . . . . . . . . . . . 25
3.3.2 Onset of the CCT within mean-field theory . . . . . . . . . . . . . . . 27
3.3.3 Critical scaling-invariance: Mean-field exponents . . . . . . . . . . . . 28
3.4 Strong-coupling theory for the CCT . . . . . . . . . . . . . . . . . . . . . . . 32
3.5 Monte-Carlo study of the CCT in 3D . . . . . . . . . . . . . . . . . . . . . . . 33
3.5.1 The centrifugal sampling method . . . . . . . . . . . . . . . . . . . . . 33
3.5.2 Simulation model and parameters . . . . . . . . . . . . . . . . . . . . 35
3.6 Simulation results in 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6.1 Overall behavior in the infinite-system-size limit . . . . . . . . . . . . 35
3.6.2 Critical Manning parameter ξ . . . . . . . . . . . . . . . . . . . . . . 41c
3.6.3 Scale-invariance near the critical point . . . . . . . . . . . . . . . . . . 44viii CONTENTS
3.6.4 Critical exponents: the CCT universality class . . . . . . . . . . . . . 47
3.7 Conclusion and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4 Counterion-Condensation Transition in Two Dimensions 53
4.1 The 2D model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.1.1 Rescaled representation . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 Simulation results in 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.1 The order parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.2 Energy and heat capacity . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.3 Condensation singularities in 2D: an analytical approach . . . . . . . . 57
4.2.4 Critical point and the continuum limit . . . . . . . . . . . . . . . . . . 60
4.2.5 The condensed fraction . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5 Strong-Coupling Interactions 63
5.1 Strong-coupling theory: General formalism . . . . . . . . . . . . . . . . . . . 64
5.1.1 The strong-coupling free energy . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Two like-charged rods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2.1 Threshold of attraction . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2.2 Equilibrium axial distance . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2.3 Comparison with numerical simulations . . . . . . . . . . . . . . . . . 72
5.3 Two like-charged spheres. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3.1 Attraction threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3.2 Comparison with numerical simulations . . . . . . . . . . . . . . . . . 77
5.4 Conclusion and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6 Polyelectrolyte Brushes: Non-linear osmotic regime 83
6.1 Non-linear scaling theory for the osmotic brush . . . . . . . . . . . . . . . . . 85
6.1.1 Comparison with Molecular Dynamics simulations . . . . . . . . . . . 88
6.1.2 Comparison with experiments . . . . . . . . . . . . . . . . . . . . . . . 90
6.2 Non-linear mean-field theory for the osmotic brush . . . . . . . . . . . . . . . 91
6.2.1 The cell model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2.2 The electrostatic free energy . . . . . . . . . . . . . . . . . . . . . . . 92
6.2.3 The elastic free energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.2.4 Optimal brush height and its limiting behavior . . . . . . . . . . . . . 95
6.2.5 Comparing mean-field results with simulations . . . . . . . . . . . . . 99
6.3 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7 Charged Polymers in Electric Field 105
7.1 Model and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.1.1 Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.1.2 Rescaled parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.1.3 Langevin Brownian Dynamics . . . . . . . . . . . . . . . . . . . . . . . 109
7.1.4 Models for charge pattern . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.2 Simulations results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.2.1 Counterion distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.2.2 Hydrodynamic “evaporation”mechanism . . . . . . . . . . . . . . . . . 114
7.2.3 Electrophoresis: Mobility in an external field . . . . . . . . . . . . . . 116Table of Contents ix
7.2.4 Counterion condensation and electrophoretic mobility . . . . . . . . . 120
7.2.5 Self-diffusion at a charge array: An analytical approach . . . . . . . . 122
7.3 Conclusion and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
A Field Theory for Macroions in an Ionic Solution 127
A.1 Weak-coupling limit: Mean-field theory . . . . . . . . . . . . . . . . . . . . . 129
A.2 Strong-coupling limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
B Notes on the Onsager instability 133
C Mean-Field Theory for Charged Cylinders: Asymptotic results 135
C.1 Limiting behavior of β for large Δ . . . . . . . . . . . . . . . . . . . . . . . . 135
PBC.2 Finite-size scaling for β close to ξ : . . . . . . . . . . . . . . . . . . . . . . . 136c
C.3 The PB cumulative density profile . . . . . . . . . . . . . . . . . . . . . . . . 136
C.4 Asymptotic behavior of S within PB theory . . . . . . . . . . . . . . . . . . 137n
C.5 PB potential, counterion density and free energy . . . . . . . . . . . . . . . . 138
C.6 PB solution in an unbounded system (Δ =∞) . . . . . . . . . . . . . . . . . 139
D Periodic Cell Model: Summation techniques for simulations in 3D 141
D.1 Counterions at charged cylinders: MC simulations . . . . . . . . . . . . . . . 141
E Strong-Coupling Interactions: Asymptotic analysis 145
E.1 Two like-charged rods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
E.2 Two like-charged spheres. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
F Free Energy of a Charged Brush 149
F.1 Freely-jointed-chain model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
F.2 PB free energy: Asymptotic results . . . . . . . . . . . . . . . . . . . . . . . . 150
Bibliography 153
List of Publications 165
Acknowledgment 167
Curriculum Vitae 169x Table of Contents

Voir icon more
Alternate Text