Contributions aux méthodes numériques pour traiter les non linéarités et les discontinuités dans les matériaux hétérogènes, Contributions to numerical methods to treat non-linearities and discontinuities in heterogeneous materials

icon

152

pages

icon

Français

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

152

pages

icon

Français

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Sous la direction de Qi-Chang He
Thèse soutenue le 11 mars 2010: Paris Est
Motivé par l'étude de tissus biologiques, ce travail contribue aux développements d'outils numériques permettant de prédire la réponse mécanique de matériaux hétérogènes non linéaires dans lesquels les énergies d'interfaces deviennent prépondérantes. Ainsi, une méthode d'homogénéisation multi échelle combinée à une technique de réduction de modèle basée sur la décomposition orthogonale aux valeurs propres est proposée dans un cadre thermique et hyperélastique. Les énergies d'interfaces entre les différentes phases des composites sont décrites par un modèle d'interface cohérent et prises en compte numériquement par une approche liant la méthode des éléments finis étendus et la méthode level-set. Une étude de l'étalement d'une cellule vivante entre deux lamelles fixes est ensuite réalisée. Les deux modèles utilisés pour les simulations montrent que l'assemblage cortex d'actine-membrane plasmique ne joue qu'un rôle minime dans la réponse mécanique cellulaire
-Homogénéisation non linéaire
-Méthodes multi-échelles
-Réduction de modèle
-Interfaces imparfaites
-XFEM/Level-set
-Etalement de cellule
Motivated by the study of biological tissues, this work contributes to developing numerical tools to predict the mechanical response of nonlinear heterogeneous materials in which the energies of interfaces can no longer be ignored. First, a computational homogenization strategy combined with a model reduction technique based on the proper orthogonal decomposition is implemented in the cases of large elastic deformations and highly nonlinear conduction. The interfaces between the different phases of a composite are described by means of a coherent interface model and taken into account numerically by an extended finite element method in tandem with a level-set technique. Finally, experimental results of single cell spreading between two fixed parallel microplates are exploited through finite element modelling. Our two models show that the bilayer membrane and the actin cortex do not play a significant role in the cell mechanical response
-Nonlinear homogenization
-Multi-scale method
-Model reduction
-Imperfect interfaces
-XFEM/Level-set
-Cell spreading
Source: http://www.theses.fr/2010PEST1079/document
Voir icon arrow

Publié par

Langue

Français

Poids de l'ouvrage

3 Mo

Alternate Text