Commande et supervision énergétique d’un générateur hybride actif éolien incluant du stockage sous forme d’hydrogène et des super-condensateurs pour l’intégration dans le système électrique d’un micro réseau, Control and energy management of a hybrid active wing generator including energy storage system with super-capacitors and hydrogen technologies for microgrid application

icon

236

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

236

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Sous la direction de Bruno François, Frédéric Colas
Thèse soutenue le 30 juin 2009: Ecole Centrale de Lille
Un système hybride multi-source est étudié dans cette thèse pour la génération dispersée basée sur des sources d’énergie renouvelable et des systèmes de stockage d’énergie. Il comprend un générateur éolien comme source d’énergie primaire, des super-condensateurs comme système de stockage à dynamique rapide, des piles à combustible et des électrolyseurs comme système de stockage sur le long terme sous forme d’hydrogène. Ils sont tous connectés à un bus continu commun et un onduleur est utilisé pour la connexion du système entier au réseau. Dans ce mémoire, nous avons présenté la modélisation du système, la conception du contrôle y compris des stratégies de répartition des flux de puissance et la gestion énergétique. Cette centrale hybride peut finalement générer des puissances lissées et contrôlables comme la plupart des générateurs classiques. Les performances ont été testées en simulation numérique et aussi sur un prototype expérimental. Les contributions scientifiques principales de cette thèse sont les suivantes : l’utilisation et l’adaptation des formalismes pour la modélisation des systèmes complexes et la conception de leur commande ; la conception et la réalisation expérimentale des émulateurs pour réduire le temps et le cout du développement du prototype expérimental ; la proposition et la validation de deux stratégies de gestion des puissances pour la régulation du bus continu et le contrôle des puissances transitées au réseau et enfin la proposition des stratégies de supervision énergétique avec la définition des modes de fonctionnement pour le générateur actif éolien afin d’assurer une disponibilité énergétique
-Centrale Hybride
-Générateur actif
-Générateur éolien
-Pile à combustible
-Electrolyseur
-Super-condensateur
-Hydrogène
-Supervision énergétique
A hybrid power system is studied in this thesis for the distributed generation based on renewable energy resources and energy storage systems in microgrid applications. It consists of a wind generator as primary energy source, super-capacitors as fast-dynamic storage system, fuel cells and electrolyzers as long-term storage system in hydrogen. They are all connected to a common DC bus and an inverter is used for the connection of the whole system to the grid. In this thesis, we have presented the system modeling, the control design including the power balancing and energy management strategies. This hybrid power system can finally supply controllable smooth powers as most conventional power plants. The performances have been tested in numerical simulations and also on an experimental test bench. As result, it is able to provide ancillary services to the microgrid. The main scientific contributions of this thesis are: the use and the adaptation of the graphical tools for the modeling of complex systems and their design; the design and the experimental implementation of real-time emulators in order to reduce the time and the cost of an experimental platform; the proposition and the validation of two power balancing strategies for the DC-bus voltage regulation and the grid power control and finally the proposition of energy management strategies for the active wind generator to ensure the energy availability
-Hybrid power system
-Active generator
-Wind generator
-Fuel cell
-Electrolyzer
-Super-capacitor
-Hydrogen
-Energy management
Source: http://www.theses.fr/2009ECLI0010/document
Voir icon arrow

Publié par

Nombre de lectures

181

Langue

English

Poids de l'ouvrage

4 Mo

N° d’ordre : 103

ECOLE CENTRALE DE LILLE


THESE

présentée en vue
d’obtenir le grade de

DOCTEUR
en
Spécialité : Génie Electrique

par
Tao ZHOU

DOCTORAT DELIVRE PAR L’ECOLE CENTRALE DE LILLE


Titre de la thèse:

Commande et Supervision Energétique d’un Générateur Hybride Actif Eolien
incluant du Stockage sous forme d’Hydrogène et des Super-Condensateurs
pour l’Intégration dans le Système Electrique d’un Micro Réseau


Soutenue le 30 Juin 2009 devant le jury d’examen :

Président Geneviève DAUPHIN-TANGUY, professeur, Ecole Centrale de Lille, LAGIS
Rapporteur Bernard DAVAT, Professeur, ENSEM de Nancy, GREEN
Daniel HISSEL, Professeur, Université de Franche-Comté, FEMTO-FCLAB Rapporteur
Membre Yongdong LI, Professeur, Université de Tsinghua, Beijing, Chine
Stéphane LECOEUCHE, Professeur, Ecole des Mines de Douai
Membre Gille NOTTON, Maître de Conférences (HDR), Université de Corse, LSPE Frédéric COLAS Docteur-Ingénieur de recherche, ENSAM ParisTech, L2EP
Directeur de thèse Bruno FRANCOIS, Maître de Conférences (HDR) Ecole Centrale de Lille, L2EP

Thèse préparée dans le Laboratoire L2EP à l’Ecole Centrale de Lille

Ecole Doctorale SPI 072
tel-00474041, version 2 - 16 Mar 2011

tel-00474041, version 2 - 16 Mar 2011



Control and Energy Management of a Hybrid Active Wind Generator
including Energy Storage System with Super-capacitors and
Hydrogen technologies for Microgrid Application






Tao ZHOU




Ph.D dissertation
Laboratoire d’Electrotechnique et d’Electronique de Puissance de Lille (L2EP)
ECOLE CENTRALE DE LILLE, FRANCE

thJune 30 2009

tel-00474041, version 2 - 16 Mar 2011


tel-00474041, version 2 - 16 Mar 2011Preface



Preface


i
tel-00474041, version 2 - 16 Mar 2011Preface
ii
tel-00474041, version 2 - 16 Mar 2011Preface
Preface

The PhD work, which is presented in this thesis, has been done at the “Laboratoire
d'Electrotechnique et d'Electronique de Puissance de Lille” (L2EP), from September 2006 to
July 2009. This work has been carried out as a part of a research project “ANR–
SUPERENER”, at Ecole Centrale de Lille with the support of the French National Research
Agency (ANR) and the China Scholarship Council (CSC).


Acknowledgements

This dissertation is not only a result of my own dedication and perseverance, but is largely a
credit to the patient and helpful people that I have worked with and to the supporting and
understanding people that I have lived with over these past three years. I would like to take
this opportunity to express my gratitude to everyone who contributed to this work.

My sincere thanks go to my supervisor, Dr. Bruno FRANCOIS, for his confidence in me
throughout this project and for his valuable guidance during the study.

I would like to thank members of the jury, Prof. Bernard DAVAT, Prof. Daniel HISSEL, Prof.
Yongdong LI, Prof. Geneviève DAUPHIN-TANGUY, Prof. Stéphane LECOEUCHE, Gille
NOTTON and Frédéric COLAS, for their valuable discussions and insightful comments
during the writing of the manuscript.

I am equally indebted to Prof. Stephane LECOEUCHE and his colleagues (Mohamed el hadi
LEBBAL, Didier JUGE-HUBERT and Gabriel HOUSSAYE) in the Department of
Informatics and Control Systems of the Ecole des Mines de Douai for their generous
cooperation and helpful discussion when I worked on the electrolyzer system in their
laboratory. Working with them during that period has been a very enriching experience.

I am also very grateful to Prof. Alain BOUSCAYROL and his colleagues (Anne-Laure
ALLEGRE, CHEN Keyu, Walter LHOMME and Christian DEMIAN) in the control team of
the L2EP for their constructive suggestions and continuous help during my work on the fuel
cell system in their laboratory.

Many thanks go also to Xavier CIMETIERE, Simon THOMY, Christophe RYMEK and
Hicham FAKHAM for their enormous help on implementation of the experimental test bench.

I would like also to thank my colleagues in the Grid Network Team (Omar BOUHALI, LI
Peng, LU Di, PENG Ling, Gauthier DELILLE, ZHANG He, Amir AHMIDI) and my
colleagues in the L2EP (TRAN Tuan Vu, Arnaud VIDET, Jean LEBESNERAIS, Fouzia
MOUSSOUNI, David MARIN, Francois GRUSON, Souleymane BERTHE, Xavier
MARGUERON, Guillaume PARENT) for their infinite friendship and encouraging supports.

Finally, I am infinitely grateful to all my friends and my families for their moral support, to
my parents for their continuous encouragement, and especially to my wife LU Yao for being
supportive and understanding during these three years, which are also the most difficult
period for her study.
iii
tel-00474041, version 2 - 16 Mar 2011Preface

Explore everything around you,
penetrate to the furthest limits of human knowledge,
and always you will come up with something inexplicable in the end.

It is called life.

Albert Schweitzer
iv
tel-00474041, version 2 - 16 Mar 2011Contents
Contents

Preface ................................................................................................................................................... iii
Acknowledgements............................................................................................................................ iii

Contents.................................................................................................................................................. v

Nomenclature of Symbols.................................................................................................................. xiii

Introduction ........................................................................................................................................... 3

Chapter I Context and Methodologies ............................................................................................... 6
I.1 Renewable energy sources and distributed generation .................................................................. 6
I.1.1 Renewable energy sources ..................................................................................................... 6
I.1.2 Distributed generation ............................................................................................................ 8
I.1.3 Smart grid............................................................................................................................... 9
I.1.4 Microgrid.............................................................................................................................. 10
I.1.5 Hybrid power system............................................................................................................ 12
I.2 Hydrogen as alternative energy carrier to electricity................................................................... 12
I.2.1 Hydrogen market.................................................................................................................. 12
I.2.2 Hydrogen-electric economy ................................................................................................. 13
I.2.3 Hydrogen as storage for electricity....................................................................................... 14
I.3 Integration of renewable energy based generators into a microgrid............................................ 15
I.3.1 General framework of the microgrid operation.................................................................... 15
I.3.2 Problems of renewable energy sources ................................................................................ 15
I.3.3 Concept of active generator.................................................................................................. 16
I.4 Presentation of the studied active generator ................................................................................ 17
I.4.1 Technologies of wind generators ......................................................................................... 17
I.4.2 Classification of energy storage systems.............................................................................. 19
1.4.3 Long-term storage system through hydrogen technologies................................................. 20
1.4.4 Fast-dynamic storage unit by super-capacitors 20
I.4.5 Structure of the studied hybrid power system ...................................................................... 21
I.5 Objectives and methodologies of the PhD thesis......................................................................... 22
I.5.1 Objectives............................................................................................................................. 22
I.5.2 Tools..................................................................................................................................... 22
I.5.3 Methods........

Voir icon more
Alternate Text