111
pages
Documents
2009
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Découvre YouScribe et accède à tout notre catalogue !
Découvre YouScribe et accède à tout notre catalogue !
111
pages
Documents
2009
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Publié par
Publié le
01 janvier 2009
Nombre de lectures
26
Poids de l'ouvrage
11 Mo
Publié par
Publié le
01 janvier 2009
Poids de l'ouvrage
11 Mo
Cellular response to double‐stranded RNA in
Chlamydia trachomatis‐infected human host cells
DDISSERTATIOON
zur Erlangung des naturwissenschaftlichen Doktorgrades
doctor rerum naturalium
(Dr. rer. nat.)
imm Fach Biologie
vvorgelegt voon
Dipl.‐Biol. Linda Böhme
aus Berlin
an der Bayerischen Julius‐Maximilians‐Universität Würzburg
Würzburg, Dezember 2009
Eingereicht am: 21.12.2009
Mitglieder der Prüfungskommission:
Vorsitzender: Prof. Dr. Thomas Dandekar
Erstgutachter: Prof. Dr. Thomas Rudel
Zweitgutachter: Prof. Dr. Thomas Hünig
Tag des Promotionskolloquiums: 12.03.2010
Doktorurkunde ausgehändigt am:
I. TABLE OF CONTENTS
I. TABLE OF CONTENTS
II. ABBREVIATIONS 1
III. ZUSAMMENFASSUNG 3
IV. ABSTRACT 4
1. INTRODUCTION 6
1.1 Chlamydia 6
1.1.1 Taxonomy of Chlamydia 6
1.1.2 Medical relevance of Chlamydia infections 7
1.1.3 Developmental cycle of Chlamydia 8
1.2 Programmed cell death 10
1.2.1 Types of PCD 11
1.2.2 Biochemical features of apoptosis 12
1.2.3 Intrinsic pathway of apoptosis 14
1.2.4 Extrinsic pathway of 15
1.2.5 PCD and infection 18
1.2.6 Chlamydia and apoptosis 19
1.3 The cellular response to dsRNA 20
1.3.1 Innate immunity signalling in response to dsRNA 21
1.3.1.1 PKR 21
1.3.1.2 RNase L 22
1.3.1.3 TLR3 22
1.3.1.4 RIG‐I and MDA5 23
1.3.1.5 IRF‐3 and NF‐κB 24
1.3.2 dsRNA‐induced apoptosis signalling 24
1.4 Aim of this work 25
2. MATERIALS AND METHODS 26
2. 1 Materials 26
2.1.1 Cell lines 26
2.1.2 Bacterial strains 26
2.1.3 Oligonucleotides 26
2.1.4 Antibodies 27
2.1.5 Chemicals 28
2.1.6 Kits 28
2.1.7 Buffers, solutions, and media 29
2.1.8 Technical equipment 30
I. TABLE OF CONTENTS
2.1.9 Software 30
2.2 Methods 31
2.2.1 Cell biological methods 31
2.2.1.1 Cell cultivation 31
2.2.1.2 Cryo stocking of cell lines 31
2.2.1.3 Infection with C. trachomatis 31
2.2.1.4 Infection with C. pneumoniae 32
2.2.1.5 Preparation of Chlamydia stocks 32
2.2.1.6 Titration of chlamydial stocks 32
2.2.1.7 Infectivity assay 33
2.2.1.8 Treatment with inhibitors or antibiotics 33
2.2.1.9 siRNA transfection 34
2.2.1.10 Application of polyI:C 34
2.2.1.11 Apoptosis induction 34
2.2.1.12 TUNEL assay 34
2.2.1.13 Luminescent caspase‐8 activity assay 35
2.2.1.14 Fluorescence‐activated cell sorting (FACS) 35
2.2.1.15 Confocal microscopy 36
2.2.1.16 Statistical analysis 36
2.2.2 Biochemical methods 36
2.2.2.1 SDS‐PAGE and immunoblotting 36
2.2.2.2 Native PAGE 37
2.2.2.3 Co‐Immunoprecipitation 38
2.2.2.4 Subcellular fractionation 38
2.2.2.5 Fluorescent labelling of polyI:C 39
2.2.3 Molecular biological methods 39
2.2.3.1 RNA‐Isolation 39
2.2.3.2 DNA digestion 39
2.2.3.3 Determination of RNA concentration 39
2.2.3.4 Copy (c)DNA synthesis 40
2.2.3.5 Quantitative reverse transcription polymerase chain reaction (qRT‐PCR) 40
2.2.3.6 Measurement of 28S rRNA 40
3. RESULTS 41
3.1 Influence of Chlamydia trachomatis infection on dsRNA‐induced apoptosis 41
3.1.1 C. trachomatis infected host cells resist polyI:C‐induced apoptosis 41
3.1.2 Apoptosis inhibition is MOI‐dependent and requires early bacterial protein synthesis 42
3.1.3 DNA fragmentation is reduced in infected host cells 44
3.1.4 Infection with C. trachomatis inhibits polyI:C‐induced activation of caspase‐8 45
3.1.4.1 Truncation of Bid is reduced in infected cells 45
3.1.4.2 polyI:C‐induced caspase‐8 activity is inhibited in an MOI‐dependent manner 46
3.1.4.3 The chlamydial block of caspase‐8 activity is stimulus‐specific 46
I. TABLE OF CONTENTS
3.1.4.4 polyI:C‐induced caspase‐8 activity and apoptosis are inhibited by C. pneumoniae
infection 47
3.1.5 Uptake of polyI:C is not prevented by infection 48
3.1.6 Impact of chlamydial infection on cellular dsRNA sensors 49
3.1.6.1 PKR signalling is not impaired in infected cells 49
3.1.6.2 RNase L activity is not altered by Chlamydia 50
3.1.6.3 polyI:C‐induced apoptosis is independent of surface TLR3 51
3.1.7 cFlip is required for caspase‐8 inhibition 51
3.1.8 cFlip knock down sensitizes infected cells to polyI:C‐induced apoptosis 53
3.1.9 Regulation of cFlip by C. trachomatis‐infection 54
3.1.9.1 cFlip levels are mildly altered by C. trachomatis‐infection 54
3.1.9.2 Confocal microscopic analysis of cFlip during infection 55
3.1.10 Interaction of caspase‐8 and cFlip in infected host cells 56
3.1.10.1 Caspase‐8 localization is not altered in infected cells 57
3.1.10.2 Subcellular fractionation 58
3.1.10.3 Co‐IP in C. trachomatis infected cells after polyI:C treatment 58
3.1.11 Role of Mcl‐1 for chlamydial inhibition of polyI:C‐induced apoptosis 59
3.1.11.1 dsRNA‐induced downregulation of Mcl‐1 is inhibited in infected host cells 59
3.1.11.2 Chlamydia‐infected cells resist dsRNA‐induced apoptosis in the absence of Mcl‐1 60
3.1.12 ERK is not required for inhibition of polyI:C‐ apoptosis during chlamydial infection
61
3.2. Influence of C. trachomatis on the cellular immune response to dsRNA 63
3.2.1 IκB‐α degradation is enhanced in host cells infected with C. trachomatis 63
3.2.2 Nuclear translocation of p65 is altered in infected cells 64
3.2.3 polyI:C‐induced IRF‐3 translocation i