Sous la direction de Youssef Hamadi, Michèle Sebag
Thèse soutenue le 31 mai 2011: Paris 11
La recherche autonome est un nouveau domaine d'intérêt de la programmation par contraintes, motivé par l'importance reconnue de l'utilisation de l'apprentissage automatique pour le problème de sélection de l'algorithme le plus approprié pour une instance donnée, avec une variété d'applications, par exemple: Planification, Configuration d'horaires, etc. En général, la recherche autonome a pour but le développement d'outils automatiques pour améliorer la performance d'algorithmes de recherche, e.g., trouver la meilleure configuration des paramètres pour un algorithme de résolution d'un problème combinatoire. Cette thèse présente l'étude de trois points de vue pour l'automatisation de la résolution de problèmes combinatoires; en particulier, les problèmes de satisfaction de contraintes, les problèmes d'optimisation de combinatoire, et les problèmes de satisfiabilité (SAT).Tout d'abord, nous présentons domFD, une nouvelle heuristique pour le choix de variable, dont l'objectif est de calculer une forme simplifiée de dépendance fonctionnelle, appelée dépendance-relaxée. Ces dépendances-relaxées sont utilisées pour guider l'algorithme de recherche à chaque point de décision.Ensuite, nous révisons la méthode traditionnelle pour construire un portefeuille d'algorithmes pour le problème de la prédiction de la structure des protéines. Nous proposons un nouveau paradigme de recherche-perpétuelle dont l'objectif est de permettre à l'utilisateur d'obtenir la meilleure performance de son moteur de résolution de contraintes. La recherche-perpétuelle utilise deux modes opératoires: le mode d'exploitation utilise le modèle en cours pour solutionner les instances de l'utilisateur; le mode d'exploration réutilise ces instances pour s'entraîner et améliorer la qualité d'un modèle d'heuristiques par le biais de l'apprentissage automatique. Cette deuxième phase est exécutée quand l'unit\'e de calcul est disponible (idle-time). Finalement, la dernière partie de cette thèse considère l'ajout de la coopération au cours d'exécution d'algorithmes de recherche locale parallèle. De cette façon, on montre que si on partage la meilleure configuration de chaque algorithme dans un portefeuille parallèle, la performance globale peut être considérablement amélioré.
-Portfolio d'algorithmes
-Apprentissage Automatique
-Apprentissage Supervisée
-Problèmes de satisfaction de contraintes
-Problèmes d'optimisation de combinatoire
-SAT
-Recherche locale
Autonomous Search is a new emerging area in Constraint Programming, motivated by the demonstrated importance of the application of Machine Learning techniques to the Algorithm Selection Problem, and with potential applications ranging from planning and configuring to scheduling. This area aims at developing automatic tools to improve the performance of search algorithms to solve combinatorial problems, e.g., selecting the best parameter settings for a constraint solver to solve a particular problem instance. In this thesis, we study three different points of view to automatically solve combinatorial problems; in particular Constraint Satisfaction, Constraint Optimization, and SAT problems.First, we present domFD, a new Variable Selection Heuristic whose objective is to heuristically compute a simplified form of functional dependencies called weak dependencies. These weak dependencies are then used to guide the search at each decision point. Second, we study the Algorithm Selection Problem from two different angles. On the one hand, we review a traditional portfolio algorithm to learn offline a heuristics model for the Protein Structure Prediction Problem. On the other hand, we present the Continuous Search paradigm, whose objective is to allow any user to eventually get his constraint solver to achieve a top performance on their problems. Continuous Search comes in two modes: the functioning mode solves the user's problem instances using the current heuristics model; the exploration mode reuses these instances to training and improve the heuristics model through Machine Learning during the computer idle time. Finally, the last part of the thesis, considers the question of adding a knowledge-sharing layer to current portfolio-based parallel local search solvers for SAT. We show that by sharing the best configuration of each algorithm in the parallel portfolio on regular basis and aggregating this information in special ways, the overall performance can be greatly improved.
-Portfolio Algorithms
-Machine Learning
-Supervised Learning
-Constraint Satisfaction Problems
-Constraint Optimization Problems
-SAT
-Local Search
Source: http://www.theses.fr/2011PA112063/document
Voir