Analyse de données de spectrométrie de masse

icon

25

pages

icon

Français

icon

Documents

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

icon

25

pages

icon

Français

icon

Documents

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

Les données de spectrométrie de masse
Pré-traitements et premiers problèmes statistiques
Inférence statistique
Analyse de données de spectrométrie de masse
A. Antoniadis, J. Bigot, S. Lambert-Lacroix, F. Letué
Laboratoire Jean Kuntzmann, Grenoble
octobre 2009 Les données de spectrométrie de masse
Pré-traitements et premiers problèmes statistiques
Inférence statistique
Plan de l’exposé
Acquisition de données SELDI-TOF (ou MALDI-TOF)
Pré-traitements et premiers problèmes statistiques
Débruitage
Suppression du bruit de fond
Normalisation, alignement et quantification des spectres
Inférence statistique
Analyse de la variance fonctionnelle
Modèles à effets aléatoires
Extraction des biomarqueurs
Apprentissage et techniques de classification. Les données de spectrométrie de masse
Pré-traitements et premiers problèmes statistiques
Inférence statistique
Acquisition des données
Des protéines purifiées ou partiellement purifiées extraites d’un
échantillon biologique (sérum par exemple) sont mélangées à
un acide qui permet au mélange de se cristalliser lorsqu’il
sèche.
Le mélange est alors appliqué sur une lame d’acier inoxydable
pré-traitée qui retient à sa surface de manière préférentielle des
classes particulières de protéines selon leurs propriétés
physio-chimiques.
L’échantillon est placé dans un tube à vide et le cristal est
soumis à un rayonnement laser, entraînant une ionisation des
protéines et un détachement (en phase gazeuse).
Les molécules de protéines ionisées en phase ...
Voir icon arrow

Publié par

Nombre de lectures

173

Langue

Français

LesdonnéesdespetcorémrteiedamssréePra-temittsenrpteeimerpsrèlbotatimessuesIstiqneecfnrésiittstaequoctobre2009LaboratoireJeanKuntzmann,GrenobleA.Antoniadis,J.Bigot,S.Lambert-Lacroix,F.LetuéAnalysededonnéesdespectrométriedemasse
nndoesLedeissamérPeart-sdéepeesrocttrmésrrpboèlemssatititementsetpremieitsitatseuqsIueiqstceenérnfAnalysedelavariancefonctionnelleModèlesàeffetsaléatoiresExtractiondesbiomarqueursApprentissageettechniquesdeclassification.InférencestatistiqueDébruitageSuppressiondubruitdefondNormalisation,alignementetquantificationdesspectresPré-traitementsetpremiersproblèmesstatistiquesAcquisitiondedonnéesSELDI-TOF(ouMALDI-TOF)Plandel’exposé
témodeirpsedrtcetré-teaiasemPrsesdonnéesLeqieuittsInféquesestarencsemèlboritsitatstpsentmespermireDesprotéinespurifiéesoupartiellementpurifiéesextraitesd’unéchantillonbiologique(sérumparexemple)sontmélangéesàunacidequipermetaumélangedesecristalliserlorsqu’ilsèche.Lemélangeestalorsappliquésurunelamed’acierinoxydablepré-traitéequiretientàsasurfacedemanièrepréférentielledesclassesparticulièresdeprotéinesselonleurspropriétésphysio-chimiques.L’échantillonestplacédansuntubeàvideetlecristalestsoumisàunrayonnementlaser,entraînantuneionisationdesprotéinesetundétachement(enphasegazeuse).Lesmoléculesdeprotéinesioniséesenphasegazeusesontalorssoumisesàunbrefchampélectriquequiproduituneaccélérationdesionsdansletubeetundétecteurauboutdutubeenregistreletempsdevol.Acquisitiondesdonnées
sttiueiqmelètasstsecsitafnIsneréraitemenssePré-teisrrpbostterpmeessdéenndoesLamedeirtémortcep:euqieituqSpetypectrdearriventsurundétecteuraveclesvaleurscorrespondentauxdiversesprotéines.enregistrementséquentieldunombred’ionsquicspiesLleursm/z.Exempledespectres
Avantageslaproductiondesionsrévèledesmoléculesdeprotéinesavectrèspeudefragmentation;lapréparationdeséchantillonsbiologiquesestrapide;Malgrécesavantages,ilpersistenéanmoinsplusieursproblèmesdanslaquantificationdesprotéinesdansleséchantillonsbiologiques,inhérentsauprocessusd’ionisationmêmeavecpourconséquenceunegrandevariabilitédanslesintensitésenregistrées,mêmepourdesdonnéesrépétées.lechampdedétectiondesmassessurcharges’étendsurdesintervallespouvantallerde2000à100000daltons,avecuneprécisionde1/10000.pterimreetemtnesPré-traiedemassemortirtéedsecepssdLenéontsqiatiteuInesqutiesncrefémèlborpssitatsse
Fléaudeladimension:unspectretypiquecontientplusde10000mesuresd’intensitéetonnedisposerelativementquedepeudespectres(individus);Détectiondepics:Identifierlespicsimportantspourdesétudesdedifférentiation.LespremiersproblèmesstatistiquesHétéroscedastisticité:lesmesuresd’unspectreprésententunedispersion(ouéchelle)variableenfonctiondel’intensitéenregistrée,rendantdescomparaisonsdifficiles;Alignement:lorsquel’expérienceestrépétéeouportesurdeséchantillonsbiologiquesdemêmenature,ilarrivequelespicsenregistrésnesoientpasalignés.Toutprocessusdemoyennisationestalorsrenduimpossiblesansalignementpréalable.éenndoesLrteiorémeptcdsseraitré-tssePdemauqitsitaenfsIueiqstceenérèlemrpboittsssattsetemeniersprem
despnéesométectrdsnoeLntmeteaimiretpsesamedeirrt-érPesesèmatstsperblroéfnIcneritsiseuqiqueestatistN|{z}facteurdenormalisationsignaldespics|{z}S(m/z)+(m/z),}z{|tiurbModélisationstatistiqued’unspectreL’idéeestdeconsidérerquechaquespectreestconstituédelasuperpositiondetroiscomposantes:lesignaldespics,unbruitdefondlisseetunbruitaléatoireadditifdemesure.But:Isolerlesignald’intérêtSi(m/z)N(02(m/z))zb}d|f{Y(m/z)=B(m/z)+
Oncommencepardébruiter(supprimerlebruit)pardesméthodesnonparamétriques.Pourcelaonutiliseundébruitageparondelettespuisquelesondelettessontdesfonctionsdebasepermettantdereprésenterdefaçonparcimonieusedesfonctionscomposéesdepics.Onutiliselatransforméeenondelettesinvariantepartranslation(TIWT)desortequelerésultatnedépendepasdel’endroitoùoncommenceàtraiterlesignal.Pourquoicelamarche-il?Lesignalestcaractériséparunpetitnombredecoefficientsalorsquelebruitestrépartisurtouslescoefficients.Leseuillageenlèvelebruitsanstropaffecterlesignal.Lesondelettesmarchentbeaucoupmieuxquelesméthodesànoyauoulessplines,quionttendanceàatténuerlesintensitésdespicslorsdudébruitage.DébruitageasemPrsetré-teaipsedrtcetémodeirLesdonnéesestarencInféquesqieuittsspermiretpsentmeitsitatssemèlbor
Bruitdefond:signallisse,attribuableàlasurchargedudétecteur.Ilestestimédemanièreplusstableaprèsdébruitage.PlusieursprocéduresexistentdanslalittératureCorrectiondubruitdefondDécompositionenondelettes.Lespectreestdécomposédansunebased’ondelettesorthogonalesetlebruitdefondestestiméparlaprojectionsurl’espaced’approximationderésolutionlaplusgrossière.Rejetautomatiquedespics.Cesalgorithmesajustentcertainesfonctions(polynômes,splines)surdesrégionsduspectrenecontenantquedubruitdefondetpasdepics.Ilssontmédiocrespourdesspectresdontlebruitdefondvariefortement.Filtragedigital.Habituellementellesproduisentdesartefactsetdesdistorsionsdessignauxsous-jacents.LeséesddonnortcepseedeirtémréePssmaemitra-tnestterpmeeisrrpoblèmesstatistiqIseuréfnecnetatstiisequ
spromiertprentseetemrtiarP-ésaesemedriétomtrecspedseénnodseLnofedtiu:dstreouepbrleerimIédstiquenIseeréfsecnitatèmblstesisatqutiLebruitdefondestconcentrésurlespointsbasduspectre.Onl’estimedoncensurdesnoeudséquidistants.Afindereprésenterlebruitdefaçon(supposélisse)estdécomposédansunebasedefonctionsB-splinesasymétriquedelavaleurabsoluedesrésidus).Lebruitdefondutilisantunerégressionquantilepénalisée(versionpondéréeEstimationdubruitdefondparcimonieusenouspréféronsutiliseruneversionpénaliséedetypeLasso.
LesdonnéesdespectrométriedemassePré-traitementsetpremiersproblèmesstatistiquesInférencestatistiqueEstimationdubruitdefondUnexempled’estimationdubruitdefond.Endébruité;enbaselspectrecorrigédubrtuidehautleonfd.spectre
Voir icon more
Alternate Text