Adaptive frame based regularization methods for linear ill-posed inverse problems [Elektronische Ressource] / von Mariya Zhariy

icon

120

pages

icon

English

icon

Documents

2008

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

120

pages

icon

English

icon

Documents

2008

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Adaptive Frame Based Regularization Methodsfor Linear Ill-Posed Inverse Problemsvon Mariya ZhariyDissertationzur Erlangung des akademischen GradesDoktorin der Naturwissenschaften– Dr. rer. nat. –Vorgelegt im Fachbereich III der Universit¨ at Bremenim Oktober 2008Betreuer: Prof. Dr. Gerd TeschkeProf. Dr. Ronny RamlauAbstractThis thesis is concerned with the development and analysis of adaptive regularization methods for solvinglinear inverse ill-posed problems. Based on nonlinear approximation theory, the adaptivity concept hasbecome popular in the field of well-posed problems, especially in the solution of elliptic PDE’s. Undercertain conditions on the smoothness of the solution and the compressibility of the operator it has beenshown that the nonlinear approximation guarantees a more efficient approximation with respect to thesparsity of the solution and to the computational effort.In the area of inverse problems, the sparse approximation approach has been applied in solving de-noising and de-blurring problems as well as in general regularization. An essential cost reduction hasbeen achieved by newly developed strategies like domain decomposition and specific projection meth-ods. However, the option of adaptive application, leading simultaneously to cost reduction and sparseapproximation, has not been taken into account yet.
Voir icon arrow

Publié par

Publié le

01 janvier 2008

Langue

English

Poids de l'ouvrage

1 Mo

AdaptiveFrameBasedRegularizationMethods
forLinearIll-PosedInverseProblems

vonMariyaZhariy

Dissertionat

zurErlangungdesakademischenGrades
haftenNaturwissenscderDoktorin–Dr.rer.nat.–

VorgelegtimFachbereichIIIderUniversit¨atBremen
2008erOktobim

Betreuer:Prof.Dr.GerdTeschke
Prof.Dr.RonnyRamlau

Abstract

Thisthesisisconcernedwiththedevelopmentandanalysisofadaptiveregularizationmethodsforsolving
linearinverseill-posedproblems.Basedonnonlinearapproximationtheory,theadaptivityconcepthas
becomepopularinthefieldofwell-posedproblems,especiallyinthesolutionofellipticPDE’s.Under
certainconditionsonthesmoothnessofthesolutionandthecompressibilityoftheoperatorithasbeen
shownthatthenonlinearapproximationguaranteesamoreefficientapproximationwithrespecttothe
sparsityofthesolutionandtothecomputationaleffort.
Intheareaofinverseproblems,thesparseapproximationapproachhasbeenappliedinsolvingde-
noisingandde-blurringproblemsaswellasingeneralregularization.Anessentialcostreductionhas
beenachievedbynewlydevelopedstrategieslikedomaindecompositionandspecificprojectionmeth-
ods.However,theoptionofadaptiveapplication,leadingsimultaneouslytocostreductionandsparse
approximation,hasnotbeentakenintoaccountyet.
Inourresearchwecombinetheadvantagesofthenonlinearapproximationwiththeclassicalregular-
izationandparameteridentificationstrategies,likeTikhonovandLandwebermethods.Wemodifythe
classicalapproachforsolvingtheill-posedinverseproblemsinordertoobtainasparseapproximation
withessentiallyreducednumericaleffort.Themainnoveltyofthedevelopedregularizationmethodsis
theadaptiveoperatorapproximation.
Ingeneral,wehaveshownthatitispossibletoconstructadaptiveregularizationmethods,whichyield
thesameconvergenceratesastheconventionalregularizationmethods,butaremuchmoreefficientwith
respecttothenumericalcosts.
Theanalyticresultsofthisworkhavebeenconfirmedandcomplementedbynumericalexperiments,that
illustratethesparsityoftheobtainedsolutionanddesiredconvergencerates.

Zusammenfassung

DasHauptvorhabendieserArbeitistdieEntwicklungadaptiverRegularisierungsmethodenf¨urdieL¨osung
linearerschlechtgestellterinverserProbleme.BasierendaufdernichtlinearenApproximationhabenadap-
tiveVerfahrenindenletztenJahreninsbesondereimBereichdergutgestelltenProblemeanPopularit¨at
gewonnen.UnterbestimmtenVoraussetzungenandieGlattheitderL¨osungunddieKompressibilit¨atdes
OperatorsistesgelungendieL¨osungeinesgutgestelltenProblemsdurcheined¨unnbesetzteDarstellung
mitlinearerKomplexit¨atzuapproximieren.
InderletztenZeitsinddieaufderd¨unnenDarstellungbasiertenAns¨atzeaufdemGebietderschlecht-
gestelltenProblememehrmalserfolgreichverwendetworden,etwaimBereichderVerbesserungder
Bildqualit¨atdurchEntrauschenundSch¨arfen.DiedarauffolgendentwickeltennumerischenVerfahren,
wiez.B.GebietzerlegungsalgorithmenoderbestimmteProjektionsstrategien,erm¨oglicheneineSenkung
derIterationsschritte,ber¨ucksichtigenabernichtdieM¨oglichkeitderadaptivenAnwendung.
DieindieserArbeitvorgestelltenadaptivenRegularisierungsverfahrenbasierenaufdenklassischenMeth-
odenzurL¨osungschlechtgestellterProbleme,etwaLandweber-IterationundTikhonov-Regularisierung
sowieentsprechenderRegelnzurWahlderoptimalenRegularisierungsparameter.DieModifikationder
klassischenVerfahrenerfolgtmitdemZiel,dieL¨osungderschlechtgestelltenProblemeaufeineadaptive
WeisezuapproximierenundgleichzeitigdenBerechnungsaufwandzureduzieren.Dabeientstehenauf
nat¨urlicheWeised¨unnbesetzteRekonstruktionen.
DietheoretischenResultatederArbeitwurdenanhandeinesnumerischenBeispiels,derRekonstruktion
vonTomographie-Daten,verifiziert.Esistunsgelungen,denRechenaufwandzuverringernunddabei
dieKonvergenzratendernichtadaptivenVerfahrenzuerhalten.

tsentCon

IWaveletBasesAndFramesForOperatorEquations
1WaveletBases
1.1MultiresolutionandWaveletRieszBases............................
1.2RieszBasisPropertyandBiorthogonality...........................
1.3CharacterizationofFunctionSpaces..............................
1.3.1FunctionSpaces.....................................
1.3.2DirectandInverseEstimates..............................
1.4WaveletsonBoundedDomains.................................
2Frames
2.1BasicFrameTheory.......................................
2.2GelfandFrames..........................................
2.3LocalizationofFrames......................................
2.4FrameBasedOperatorDiscretization..............................

IIInverseProblems
B3Definitionsasic3.1Ill-PosednessandGeneralizedInverse..............................
3.2RegularizationandOrderOptimality..............................
3.3CompactLinearOperators...................................
4FilterBasedFormulation
4.1RegularizationPropertyandParameterChoiceRules.....................
4.1.1A-prioriParameterChoice................................
4.1.2Morozov’sDiscrepancyPrinciple............................
4.1.3BalancingPrinciple...................................
4.2RegularizationinHilbertScales.................................
4.2.1WaveletBasedRegularization..............................
4.3TikhonovRegularization.....................................
4.3.1RegularizationResult..................................
4.3.2TikhonovRegularizationwithanA-PrioriParameterChoice............
4.3.3TikhonovRegularizationwithMorozov’sDiscrepancyPrinciple...........
4.3.4TikhonovRegularizationwithBalancingPrinciple..................
4.3.5TikhonovRegularizationinHilbertScales.......................
4.4LandweberIteration.......................................
4.4.1RegularizationResult..................................

5779011131411771910202

3225522682312323333353738393939304040414

4.4.2A-prioriTruncationRule................................
4.4.3Morozov’sDiscrepancyPrinciple............................
4.4.4LandweberIterationinHilbertscales.........................

IIIAdaptivityIssues
5NonlinearApproximationandAdaptivity
5.1NonlinearApproximation....................................
5.2BestN-termApproximationin2................................
6AdaptiveIterativeSchemeforWell-PosedProblems
6.1FrameBasedSetting.......................................
6.2AdaptiveDiscretizationoftheOperatorEquation.......................
6.3FrameBasedAdaptiveSolver..................................

IVAdaptiveRegularizationMethods
7ApproximateFilterBasedMethods
7.1ApproximateFilterBasedRegularization...........................
7.1.1ApproximateWaveletBasedRegularization......................
7.2ApproximateMorozov’sDiscrepancyPrinciple........................
7.3OrderOptimalitybyApproximateBalancingPrinciple....................
8AdaptiveTikhonovRegularization
8.1AdaptiveTikhonovRegularization:Formulation.......................
8.1.1RegularizationResult..................................
8.2OrderOptimalitybyA-prioriParameterChoice........................
8.2.1StandardFilterBasedMethod.............................
8.2.2A-prioriErrorEstimateinHilbertscales........................
8.3ComplexityofAdaptiveTikhonovRegularization.......................
8.4ApproximateApplicationofBalancingPrinciple.......................
9AdaptiveLandweberIteration
9.1ModifiedLandweberIteration..................................
9.2AdaptiveFormulationofLandweberIteration.........................
9.3OrderOptimalitybyA-PrioriParameterChoice.......................
9.4RegularizationbyA-PosterioriParameterChoice.......................
9.4.1AdaptiveResidualDiscrepancy.............................
9.4.2AMonotonicityofAdaptiveIteration.........................
9.4.3ConvergenceinExactDataCase............................
9.4.4RegularizationResult..................................
roblemPExample1010.1LinearRadonTransform.....................................
10.2RegularityofSolution......................................
10.3RequirementsontheSystem..................................
10.3.1RequirementsImposedbytheRegularityoftheSolution...............
10.3.2RequirementsImposedbytheOperatorDiscretization................

141424

4345546494940515

7559061626367696960707071727373747678787871848911929393959

11

4.01

Numerics

10.4.1

Summary

.............................................

Adaptive

and

Discretization

Outlo

ok

.................................

79

79

105

ductiontroIn

Adaptivityisapromisingconceptinsignalrepresentationwheneverastructureorasignalundercon-
siderationisinsomesensesparse,i.e.itcanbeapproximatedbyonlyafewcomponentsintermsof
somebasisorframe.Themaintwoquestionsinsparseapproximationarehowtofindanappropriate
decomposingsystemandwhichcomponentstouse.
Inthisthesisweapplytheconceptofnonlinearapproximation[28]intermsofwavelets,whichhasits
origininthemultiresolutionanalysis[20,40].Themultiscaledecompositionbenefitsfromthesimultane-
ousrepresentationofthesignalcomponentsondifferentresolutionlevels,whichinmanyrelevantcases
resultsinamoreefficientapproximationthantherepresentationonthefinestresolutionlevel.However,
givenamultileveldecomposition,therearedifferentwaystoapproximatethedecomposedsignalfrom
itsbuildingcomponents.Theefficiencyofapproximationcanbeconsiderablyimprovedifoneconsiders
significantcomponentsofthesignalinsteadofworkingwithlinearsubspaces,builtbytruncationin
scale.Unlikethelevel-by-levelapproximati

Voir icon more
Alternate Text