149
pages
Documents
2011
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Découvre YouScribe en t'inscrivant gratuitement
Découvre YouScribe en t'inscrivant gratuitement
149
pages
Documents
2011
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Publié par
Publié le
01 janvier 2011
Nombre de lectures
48
Poids de l'ouvrage
18 Mo
Publié par
Publié le
01 janvier 2011
Nombre de lectures
48
Poids de l'ouvrage
18 Mo
DISSERTATION ZUR ERLANGUNG DES DOKTORGRADES
DER FAKULTÄT FÜR BIOLOGIE
DER LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN
ACQUISITION AND LOSS OF CHROMATIN MODIFICATIONS
DURING AN EPSTEIN-BARR VIRUS INFECTION
ANNE SCHMEINCK
Dissertation eingereicht am 28. April 2011
Erstgutachter: Prof. Dr. Dirk Eick
Zweitgutachter: Prof. Dr. Heinrich Leonhardt
Tag der mündlichen Prüfung: 25.10.2011
TRICKERKLÄRUNG
Hiermit erkläre ich, dass die vorliegende Arbeit mit dem Titel
„ACQUISITION AND LOSS OF CHROMATIN MODIFICATIONS DURING AN EPSTEIN-BARR VIRUS
INFECTION“
von mir selbstständig und ohne unerlaubte Hilfsmittel angefertigt wurde, und ich mich dabei
nur der ausdrücklich bezeichneten Quellen und Hilfsmittel bedient habe. Die Arbeit wurde
weder in der jetzigen noch in einer abgewandelten Form einer anderen Prüfungskommission
vorgelegt.
München, 28. April 2011
Anne
Schmeinck
CK
BRIGHT LIGHTS IN BLACK HOLES
TRICKCONTENT
1.
INTRODUCTION
1
1.1
Epstein Barr
virus
–
discovery
and
basic
principles
1
1.1.1
EBV
and
cellular
mimics
2
1.2
Epigenetics
5
1.2.1
DNA
methylation
7
1.2.2
Nucleosomes:
More
than
just
beads
on
a
string
11
1.2.3
Histone
modifications
16
1.2.4
The
epigenetic
memory
20
1.3
Epigenetics
in
EBV
22
1.3.1
EBV’s
life
cycle
22
1.3.2
Important
checkpoints
of
EBV’s
life
cycle
rely
on
epigenetic
mechanism
s 24
1.4
Scope
of
my
thesis
work
25
2.
MATERIAL
26
2.1
Plasmids
26
2.2
Antibodies
26
2.3
Oligonucleotides
27
2.4
Bacterial
strains
27
2.5
Eukaryotic
cell
lines
27
2.6
Cell
culture
media
and
additives
27
2.6.1
Media
for
the
cultivation
of
bacteria
27
2.6.2
Media
for
the
cultivation
of
eukaryotic
cells
28
2.7
Chemicals
and
enzymes
28
2.8
Buffers
and
solutions
29
2.9
Commercial
kits
30
2.10
Software
30
2.11
Devices
and
consumables
31
3.
METHODS
32
3.1
Bacterial
culture
32
3.2
Eukaryotic
cell
culture
32
3.2.1
Cell
culture
conditions
32
3.2.2
Storage
of
eukaryotic
cells
33
3.2.3
Electroporation
of
eukaryotic
cells
33
CONTENT
II
3.2.4
Establishment
of
stablce
ll
lines
33
3.2.5
Isolation,
separation
and
infection
of
human
B
cells
33
3.2.6
Collection
of
B95.8
virus
stocks
34
3.2.7
Flow
cytometry
34
3.2.8
Sorting
of
GFP
expressing
cells
34
3.3
Nucleic
acid
techniques
35
3.3.1
DNA
purification
from
E.coli
35
3.3.2
DNA
purification
from
eukaryotic
cells
35
3.3.3
Purification
of
DNA
from
PCR
products
and
agarose
gels
35
3.3.4
Polymerase
chain
reaction
(PCR)
36
3.3.5
Quantitative
real
time
PCR
36
3.3.6
Isolation
of
RNA
from
cells
37
3.3.7
Reverse
transcription
of
RNA
37
3.3.8
Transfer
of
DNA
to
membranes
(Southern
blot)
38
3.3.9
Radioactive
labeling
of
DNA
38
3.3.1
0 DNA ‐DNA
hybridization
38
3.4
Methylated
DNA
immunoprecipitation
(MeDIP)
39
3.4.1
Immunoprecipitation
of
methylated
DNA
(MeDIP)
39
3.4.2
Quantification
of
MeDIP
DNA
by
real
time
PCR
(qPCR)
39
3.4.3
Genome‐wide
analysis
of
MeDIP
DNA
by
microarray
hybridization
(MeDIP ‐
on ‐ChIP)
39
3.5
Bisulfite
sequencing
41
3.5.1
Bisulfite
modification
of
DNA
41
3.5.2
PCR
of
bisulfite
modified
DNA
41
3.5.3
Deep
bisulfite
sequencing
41
3.5.4
Data
analysis
41
3.6
Analysis
of
nucleosome
occupancy
42
3.6.1
MNase
digestion
of
chromatin
42
3.6.2
Labeling
of
DNA
for
microarray
hybridization
43
3.6.3
Microarray
hy bridization
43
3.6.4
Data
analysis
43
3.7
Chromatin
Immunoprecipitation
(ChIP)
44
3.7.1
Chromatin
preparation
44
3.7.2
Chromatin
immunoprecipi tation
and
purification
of
ChIP
DNA
45
3.7.3
Quantification
of
ChIP
DNA
by
real
time
PCR
(qPCR)
45
3.8
Indirect
endlabeling
46
3.9
Western
blot
immunodetection
of
RNA
Pol
II
46
4.
RESULTS
I
47
4.1
Early
epigenetic
events
can
be
monitored
in
infection
experiments
with
primary
B
cells
in
vitro
48
4.2
EBV’s
DNA
methylation
is
a
slow,
but
precise
process
and
can
be
followed
in
vitro
49
4.2.1
MeDIP
experiments
in
the
cell
line
Raji
49
4.2.2
Kinetics
of
DNA
methylation
in
primary
infected
B
cells
52
4.3
EBV’s
DNA
is
governed
by
nucleosomes
very
early
after
infection
55
4.3.1
Micrococcal
nuclease
is
a
tool
to
study
nucleosomal
DNA
56
4.3.2
A
Southern
blot
analysis
detects
EBV
DNA
in
nucleosomes
nine
days
p
i 56
4.3.3
OriP
nucleosomes
are
detected
as
early
as
three
days
pi
in
a
qPCR
approac
h 57
5.
RESULTS
II
60
5.1
EBV’s
DNA
methylation
at
the
nucleotide
level
61
5.1.1
Deep
bisulfite
sequencing
assesses
EBV
DNA
methylation
at
the
nucleotide
level
62
5.1.2
Lytic
induction
does
not
change
the
DNA
methylation
of
EBV
promoters
67
5.2
Nucleosome
occupancies
in
EBV
70
CONTENT
III
5.2.1
Mononucleosomal
DNA
on
Chip
(MND ‐on ‐Chip)
experiments
assess
the
nucleosomal
occupancy
of
viral
DNA
70
5.2.2
Nucleosome
occupancy
in
EBV’s
BZLF1‐responsive
promoters
71
5.2.3
Indirect
endlabeling
and
Chromatin
Immunoprecipitation
experiments
confirm
the
loss
of
nucleosomes
at
ZREs
78
5.3
Histone
modifications
and
chromatin
modifying
enzymes
in
EBV
81
5.3.1
Histone
H3
and
its
post‐translational
modifications
at
EBV
promoters
82
5.3.2
Polycomb
proteins
set
up
the
repressed
state
in
EBV’s
lytic
promoters
86
5.4
Occupation
of
EBV
promoters
with
RNA
polymerase
II
87
5.4.1
ChIP
experiments
of
RNA
Pol
II
and
its
CT‐mD odified
versions
90
5.4.2
The
Pol
IIB
form
cannot
be
detected
in
western
blomt
imunodetection
after
induction
of
the
lytic
phase
91
5.4.3
The
binding
of
RNA
Pol
II
at
promoters
of
early
lytic
genes
strongly
increased
gene
transcription
92
6.
DISCUSSION
95
6.1
State
of
the
art
98
6.2
Scope
and
aim
of
my
thesis
work
100
6.3
How
to
establish
and
maintain
latency?
101
6.3.1
The
temporal
establishment
of
an
epigeentic
pattern
on
EBV
DNA
101
6.3.2
Epigenetic
modifications
help
to
maintain
the
latent
state
103
6.4
How
to
escape
the
latent
state?
105
6.4.1
Primary
infected
B
ces
llare
ready
for
lytic
reactivation
two
weeks
pi
105
6.4.2
Chromatin
changes
at
defau‐lotff
promoters
after
lytic
induction
105
6.4.3
Two
defaultoff
promoters
in
a
close‐up:
Epigenetic
regulation
at
BBLF4
and
BMRF1
108
6.4.4
Chromatin
changes
atd
efaulton
and
poisedon
promoters
upon
lytic
induction
111
6.5
Open
questions
and
outlook
112
6.5.1
Why
are
certain
parts
of
the
EBV
genome
kept
in
an
open
configuration?
112
6.5.2
What
is
the
mechanism
of
chromatin
remodeling
upon
lytic
induction?
112
6.5.3
What
is
the
mechanism
of
poisedon
and
defaulton
pr omoter
activation
upon
lytic
induction?
113
6.5.4
What
is
the
nature
of
RNA
Polymerase
II
during
lytic
replication
of
EBV?
114
6.5.5
Which
concepts
of
EBV
can
be
transferred
to
cellular
epigenetic
mechanisms?
114
7.
SUMMARY
115
8.
ABBREVIATIONS
117
9.
LITERATUR
120
10.
APPENDIX
127
10.1
Oligonucleotides
127
10.1.1
RT‐PCR
Primer
127
10.1.2
qPCR
Primer
128
10.1.3
Deep
bisulfite
sequencing
primer
129
10.2
Deep
bisulfite
sequencing
analys is
131
10.2.1
Matlab
script
131
10.2.2
Deep
bisulfite
sequencing
results
of
all
CpG
sites
in
the
analysis
132
10.3
Nucleosome
occupancies
at
BZLF1
responsive
promoters
139
11.
PUBLICATIONS
140
12.
CURRICULUM
VITAE
141
1. INTRODUCTION
1.1 Epstein-Barr virus – discovery and basic principles
Epstein-Barr virus (EBV), also called human herpesvirus 4 (HHV 4), belongs to the family of
γ-herpesviruses. EBV infects very efficiently human B cells due to the strong interaction of
the viral glycoprotein gp350/220 with the complement receptor CD21, which is presented on
the surface of B cells and certain epithelial cells (Nemerow et al., 1987).
EBV’s discovery is closely related to an important characteristic of the virus: the association
with different human tumors and lymphomas. In 1958, Denis Burkitt investigated a malignant
tumor of children in equatorial Africa (Burkitt, 1958), which became to be known as Burkitt’s
lymphoma (BL). Because of the conspicuous coincidence of this tumor disease with the
distribution area of malaria, he assumed the connection of an infectious agent spread by
arthropods to this disease (Burkitt, 1962). In 1964, the virologist Anthony Epstein and his
student Yvonne Barr as well as R. J. Pulvertaft were able to cultivate a B cell line out of those
tumor samples (Epstein et al., 1964; Pulvertaft, 1964). Epstein was capable to prove the
existence of herpesviru