Ab initio all electron full potential linearized augmented plane wave method for one-dimensional systems [Elektronische Ressource] / vorgelegt von Yuriy Mokrousov

icon

147

pages

icon

English

icon

Documents

2005

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

147

pages

icon

English

icon

Documents

2005

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Ab initio All-electron Full-potential LinearizedAugmentedPlane-wave Method for One-dimensional SystemsVon der Fakult at fur Mathematik, Informatik und Naturwissenschaften derRheinisch-Westf alischen Technischen Hochschule Aachenzur Erlangung des akademischen Grades eines Doktors der Naturwissenschaftengenehmigte Dissertationvorgelegt vonMaster of ScienceYuriy Mokrousovaus Kiev (Ukraine)Berichter: Universit atsprofessor Dr. Stefan BlugelUniversit Dr. Peter Heinz DederichsTag der mundlic hen Prufung: 24.05.2005Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfugbarAbstractIn recent years we witnessed an enormous progress in the chemical synthesis, growth andthe development of technology allowing the fabrication of a rich variety of one-dimensional(1D) structures. They include single walled (SWNT) and multi-walled (MWNT) one-dimensional tubular structures, made of carbon, GaN, BN, TiO, VO and other com-pounds, thin metallic quantum wires, quasi-1D molecular magnets etc. They involveelements from the entire periodic table and show new physical phenomena such as quan-tized conductance, charge and spin separation, intriguing structural and magnetic prop-erties such as high spin-polarization and large spin-scattering lengths. In many cases thetransport properties of these systems can be easily tuned by choosing suitable structuralparameters such as the diameter or chirality.
Voir icon arrow

Publié le

01 janvier 2005

Langue

English

Poids de l'ouvrage

4 Mo

AbinitioAll-electronFull-potentialLinearized
tedAugmenPlane-waveMethodforOne-dimensionalSystems

VonderFakult¨Rheiniscatf¨urh-Westf¨aliscMathematik,henTechniscInformatikhenHoundchschuleNaturwissenscAachenhaftender
zurErlangungdesakademischenGradeseinesDoktorsderNaturwissenschaften
Dissertationgenehmigte

onvorgelegtv

ScienceofMaster

vMokrousouriyY

(Ukraine)Kievaus

Berichter:Universit¨atsprofessorDr.StefanBl¨ugel
Universit¨atsprofessorDr.PeterHeinzDederichs

Tagderm¨undlichenPr¨ufung:24.05.2005

DieseDissertationistaufdenInternetseitenderHochschulbibliothekonlineverf¨ugbar

Abstract

Inrecentyearswewitnessedanenormousprogressinthechemicalsynthesis,growthand
thedevelopmentoftechnologyallowingthefabricationofarichvarietyofone-dimensional
(1D)structures.Theyincludesinglewalled(SWNT)andmulti-walled(MWNT)one-
dimensionaltubularstructures,madeofcarbon,GaN,BN,TiO,VOandothercom-
pounds,thinmetallicquantumwires,quasi-1Dmolecularmagnetsetc.Theyinvolve
elementsfromtheentireperiodictableandshownewphysicalphenomenasuchasquan-
tizedconductance,chargeandspinseparation,intriguingstructuralandmagneticprop-
ertiessuchashighspin-polarizationandlargespin-scatteringlengths.Inmanycasesthe
transportpropertiesofthesesystemscanbeeasilytunedbychoosingsuitablestructural
parameterssuchasthediameterorchirality.Moreover,thediametersofmanyexperimen-
tallyobserved1Dstructuresaremuchsmallerthanmostsemiconductordevicesobtained
sofar,andthusonecanimaginethatthesmallestpossibletransistorsarelikelytobe
basedonthem.Inordertounderstandthestructure-propertyrelationinthesenewma-
terialsonthebasisoftheelectronicstructure,abinitiocalculationsbasedonthedensity
functionaltheoryplayanimportantrole.
Inthisworkwehavepresentedanextensionofthefull-potentiallinearizedaugmented
plane-wave(FLAPW)methodtotrulyone-dimensionalsystems.Thespaceispartitioned
intothreeregions,themuffin-tinspherearoundtheatom,avacuumregionsurrounding
acylinderandtheinterstitialregionbetweentheatomsandthevacuumregion.Ineach
regionoptimalbasisfunctionsforthewavefunctions,chargedensityandpotentialareused.
Thespin-orbitinteractionisincludedtoinvestigatetheorbitalmomentsandthemagnetic
anisotropy.Despitetheplane-waverepresentationintheinterstitialregionwewereable
toincludeawideclassofchiralsymmetries,characteristicforone-dimensionalsystems.
Theone-dimensionalFLAPWmethodwasimplementedasextensionoftheFLAPWcode
FLEURandparallelizedforsupercomputingapplications.Duetotheefficientlyadjusted
basisfunctionsandpartitioningofspace,1Dcodeallowstoachieveasignificantspeed-
up,forinstance,approximatelybyafactorof150formonowires,ascomparedtothe
super-cellapproachinthebulkcode.
Theaccuracy,precisionandcorrectnessofthecodewasvalidatedonasetof1Dstruc-
tures,alreadycalculatedpreviouslywithothermethods.Wefocusedonthesystemsof
alargecurrentinterestinthefieldofnanophysics.Wereportedonthecalculationsof
3d-and4d-monowires(Ti;Y,Zr,Nb,Mo,Tc,Ru,RhandPd).Forthesemonowires
weinvestigatedtheferro-andantiferromagneticinstability,calculatedequilibriuminter-
atomicdistances,magneticandorbitalmoments,magnetocrystallineanisotropyenergies.
Wefoundthatacrossthe4d-transition-metalseries,YandNbexhibitanonmagnetic
ground-state,MoandTcareantiferromagneticandZr,Ru,RhandPdareferromagnetic
atequilibriumlatticeconstants.FortheRu,RhandPdsystemiswasfoundthatthe
easyaxisisperpendiculartothewireforRuandPdandalong-the-wireforRh.
Furtherweconsidereda(6,0)nanowireofgoldatoms,andahybridstructureofaniron
monowireinsideagold(6,0)tube,showingthattheFemonowireispronetothePeierls
dimerization.ForthehybridsystemFe@Au(6,0)wefoundahighspin-polarizationatthe

Fermilevel,proposing,therefore,thissystemasapossiblecandidateforspin-dependent
applications.orttranspUsingasuper-cellapproachwithintheone-dimensionalFLAPWmethodweinves-
tigatedasetofone-dimensionalmultiple-deckersandwichesofbenzeneandvanadium,
whichareforthepast20yearsofgreatinterestinthefieldoforganometallics.Thecalcu-
latedstructuralresultsobtainedareingoodagreementwithexperimentalandtheoretical
results.Afterthecalculationoftotalenergies,magneticmoments,orbitalinteraction
schemes,onecanfinallyconclude,thatwiththeincreasingnumberofthevanadiumatoms
inthemolecule,themagneticmomentsofvanadiiprefertoorderferromagnetically,which
wasrecentlyobservedexperimentally.

”UsinganequalityduetoBogolyubov,MerminandWagner

haveprovedrigorouslytheabsenceofbothferromagnetism

andantiferromagnetisminone-dimensionalspinsystems.”

M.B.WalkerandT.W.Ruijgrak,PhysicalReview,171,513

still...still...”still...

MilesDavistohismusiciansin

GingerbreadBoy,album”MilesSmiles”,Columbia

still...”

CL

2601

(1968)

(1966)

4

tstenCon

ductiontroIn1

2DensityFunctionalTheory
2.1DensityFunctionalTheory...........................
2.2SpinDensityFunctionalTheory........................
2.3TheLocalSpinDensityApproximation....................
2.4TheGeneralizedGradientApproximation(GGA)..............

3FLAPWApproachtoOne–DimensionalSystems
3.1FLAPWMethod................................
3.1.1TheAPWMethod...........................
3.1.2TheConceptofLAPW........................
3.1.3TheConceptofFLAPW........................
3.2ChiralSymmetries...............................
3.2.1HexagonalIn-PlaneLattice......................
3.2.2TriangularIn-PlaneLattice......................
3.3Implementation.................................
3.3.1Geometry................................
3.3.2Symmetries...............................
3.3.3ChargeDensityandPotential.....................
3.3.4CoulombPotential...........................
3.3.5BasisFunctions.............................
3.3.6EigenvalueProblem..........................
3.3.7Timing..................................

ProblemaluevEigen44.1RelativityinValenceElectronCalculations..................
4.1.1TheKohn-Sham-DiracEquation....................
4.1.2TheScalarRelativisticApproximation................
4.2ConstructionoftheHamiltonianMatrix...................
4.2.1HamiltonianandOverlapMatricesintheSpheres..........
4.2.2InversionSymmetry..........................
4.2.3HamiltonianandOverlapMatricesintheInterstitial........

5

9

1313161718

21212223252627293031323435373838

4142434446475052

CONTENTS64.2.4HamiltonianandOverlapMatricesintheVacuum.........54
4.3FermiEnergyandBrillouinZoneIntegration.................58
61yDensitCharge55.1GenerationoftheStartingDensity......................61
5.2GenerationoftheChargeDensity......................63
5.2.1“l-like”Charge.............................64
5.2.2DeterminationoftheOptimalEnergyParameters..........65
5.2.3GenerationoftheChargeDensityintheSpheres...........65
5.2.4GenerationoftheChargeDensityintheInterstitial........66
5.2.5GenerationoftheChargeDensityintheVacuum..........67
69tialotenP66.1CoulombPotential...............................69
6.1.1ThePseudo-ChargeScheme......................69
6.1.2SolutionofthePoissonEquationintheVacuumandInterstitial..71
6.2Exchange–CorrelationPotential........................79
σσ6.2.1CalculationofandVintheInterstitial.............79
xcxcσσ6.2.2CalculationofandVintheSpheres...............80
xcxcσσ6.2.3CalculationofandVintheVacuum...............80
xcxc83Results77.1MonowiresofTiand4dtransitionelements.................83
7.1.1TiMonowire..............................85
7.1.2Monowiresof4dtransitionelements.................88
7.2Gold(6,0)Nanowire..............................99
7.2.1ComputationalDetails.........................99
7.2.2GeometricalStructure.........................101
7.2.3ElectronicStructure..........................101
7.2.4ChargeDensity.............................102
7.3HybridStructureFe@Au(6,0).........................103
7.3.1GeometricalStructure.........................104
7.3.2MagneticProperties..........................105
7.3.3ElectronicStructure..........................106
7.3.4ChargeDensity.............................108
7.4One-DimensionalMultipleBenzene-VanadiumSandwiches.........108
7.4.1ComputationalDetails.........................112
7.4.2V(Bz)Complex.............................113
7.4.3V(Bz)Complex............................118
217.4.4V(Bz)Complex............................122
327.4.5V(Bz)Complex............................126
437.4.6Conclusions...............................129

CONTENTS

8

Conclusions

7

131

8

CONTENTS

Chapter1

ductiontroIn

tiveDuringandthefastestlastgrodecadewingfieldsresearchofonmothedernphnanoscaleysics.devOneelopreasonedtoisonecertainlyofthethemostinnoenormousva-
alloprogresswingthewitnessedfabricationintheofcarichemicalhvarietsynythesis,ofgronanomaterialswthandthewithdevunprecedenelopmentoftedtecnewhnologyprop-
erties.Asthescaleofnanomaterialscontinuetodecreasefromthemesoscopicregime
totheatomicscale,one-dimensional(1D)nanometerscalesystemssuchascarbonnan-
licotubquanes[38],tumwiresradially[49,and29,113axially]momovedindulatedtothefocussemiconductorofattennanotion.wiresThe[71],excitemenandthintinmetal-these
quantizedone-dimensionalconductance,structureschargeisfueledandbspinytheirwseparation,ealthofinnewtriguingphysicalstructuralphenomenaandsucmagnetichas
propthereisertiesasucgeneralhashighconsensusspin-pontheolarizationexpectationandlargethatthespin-scatteringquantumnaturelengthsin[115].materialsTodayis,

Voir icon more
Alternate Text