Introduction to Evolutionary Computation and Evolutionary Computation Module Tutorial 5

icon

29

pages

icon

English

icon

Documents

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

icon

29

pages

icon

English

icon

Documents

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

Exercise 6 EA with Real Implementation (Matlab code) SummaryIntroduction to Evolutionary Computation and EvolutionaryComputation ModuleTutorial 5V. Landassuri-Morenov.landassuri-moreno@cs.bham.ac.ukSchool of Computer ScienceUniversity of BirminghamNovember 23, 20091/11Exercise 6 EA with Real Implementation (Matlab code) SummaryOutlineExercise 6EA with Real Implementation (Matlab code)Summary2/11I Weakness:I The main issue here is that for a particular problem, you need to design a repairalgorithmI There is not a general equation that could be appliedI Depending of the problem at hand, the Repair algorithm could be as difficult as tosolve the original problemExercise 6 EA with Real Implementation (Matlab code) SummaryQ1. Weakness in a Repair AlgorithmRepair Algorithm:I Repair algorithms let us map infeasible individuals into feasible onesExercise 6 3/11Exercise 6 EA with Real Implementation (Matlab code) SummaryQ1. Weakness in a Repair AlgorithmRepair Algorithm:I Repair algorithms let us map infeasible individuals into feasible onesI Weakness:I The main issue here is that for a particular problem, you need to design a repairalgorithmI There is not a general equation that could be appliedI Depending of the problem at hand, the Repair algorithm could be as difficult as tosolve the original problemExercise 6 3/11Speciation:I Makes a parallel search in each optima to find multiple solutions at the same time(identifying the actual peak in ...
Voir icon arrow

Publié par

Langue

English

Exercise6EAwitheRlamIlpmeneatit(MonlaatodbcSue)rammy
School of Computer Science University of Birmingham
November 23, 2009
Introduction to Evolutionary Computation and Evolutionary Computation Module Tutorial 5
V. Landassuri-Moreno v.landassuri-moreno@cs.bham.ac.uk
1/11
exEmIlpmeneatitnoM(rcise6EAwithRealyodbclaatarmmSue)
code)
(Matlab
Outline
Summary
Exercise 6
Implementation
EA with Real
11/2
rcise6EAExeodbclaat(MontitanemelpmIlaeRhtiwymmra)euSmaheisinehsueierahtsroftrapaucitWIaenkse:sTIerehTImhtiroglarquleranegetanoisuoenmey,orlbalprepaignardesiedtoelbohtamtfogrpehaieplgrad,aneRthctuodlebtaoitnahDependinappliedIreicmexE1/1es36rigitheoroblnalpatlucfievlosotscohmitorsdeadbul
Repair Algorithm:
Repair algorithms let us map infeasible individuals into feasible ones
Weakness in a Repair Algorithm
Q1.
I
ciseExer
IWeakness: Iparticular problem, you need to design a repairThe main issue here is that for a algorithm IThere is not a general equation that could be applied Iproblem at hand, the Repair algorithm could be as difficult as toDepending of the solve the original problem
Q1. Weakness in a Repair Algorithm
11/36
Repair Algorithm: Ilet us map infeasible individuals into feasible onesRepair algorithms
lpmeneatitnoM(taise6EAwithRealImEcrexyrammuS)edocbal
I
charea)Epeakinea/411
Q2. Main differences between Niching and Speciation
Finds and maintain subpopulation of solutions around multiple optima (finding different peaks)
Niching:
excrsi6eenide(imetamesthlautcaehtgniyfitdmultontimachopsntatuoiseloitlpyramum)SdecoabtlMan(emtntaoiaeIlpmel6EAwithRExerciseecSpelserallineaarchnoI:aiitasapaMek
icreE6esxEammuS)edyrRhaewAtielemIlpmion(ntatabcoMatl
Speciation: Ifind multiple solutions at the same timeMakes a parallel search in each optima to (identifying the actual peak in each area)
Niching: IFinds and maintain subpopulation of solutions around multiple optima (finding different peaks)
11
Q2. Main differences between Niching and Speciation
Eex6e/4crsi
LandscaogolIfyIuratbialwygonhtiI:eplanAouwiionyunctivefejtcehboolttoyputincfuhefteoapscdnaLehtsetaercllabcode)SummaryI)syoyfIv(saellaivnduaidakutnieaitlaosul(lpatoneorrespontion)itchehtnitniopaotsdysrgneeEanplerypifcpSceecI:ruafpeICdscaflanormotoontiopzemiheITuoynevahsehtcraehspaceplottedinaigevrnnaegw(ihhcim-danisalonsienalprepyhactII)enesomnhavks,tepeasha,orguaterdna
variables
in
Fitness landscape and energy an EA and the solutions in the
the
relationships
between
1
Q3.LandscapesandEnergy surfaces
surface describe population.
65/1icesxEreitnoimazoitulosaimretednheeterIHofgyerEncilahpsyelsmrpboromcomefcal/hemirperelbofosminimnIiouaUsytllyaheehboejtcvifenutcnatethetnessoftlementation(MatlesE6wAtiRhaeIlpmExcier
ysurnerg:ISpfaceEomICpecahemcroefrofcicesdnalfomicre56es11/
Landscape: IAnalogy with natural biology IIf you plot the objective function you will creates the Landscape of the function to optimize IThen you have the search space plotted in a given range (which is a n-dimensional hyperplane) IIt can have some peaks, troughs, and flat areas (valleys) Iindividual (a potential solution) it corresponds to a point in theIf you take an hyperplane
Fitness landscape and energy surface describe the relationships between variables in an EA and the solutions in the population.
Q3.LandscapesandEnergy surfaces
ivctjeobheftsoesllausUInoitcnufelemsprobyareythenoxEazitinimfoimicyspralcamiphl/terenEehelboHIsmolutiondergyofasethtenttereimandecoum)SMan(abtltnemoitaIlaeelpm6EAwithRExerciseryma
erExE6wAicesaeIltiRhmentmplen(MaatioExerci
Landscape: IAnalogy with natural biology IIf you plot the objective function you will creates the Landscape of the function to optimize IThen you have the search space plotted in a given range (which is a n-dimensional hyperplane) IIt can have some peaks, troughs, and flat areas (valleys) IIf you take an individual (a potential solution) it corresponds to a point in the hyperplane
Q3.LandscapesandEnergy surfaces
Energy surface: ISpecific form of landscape ICome from chemical/physical problems Ithe Energy of a solution determinate the fitness of the objective functionHere IUsually they are problems of minimization
Fitness landscape and energy surface describe the relationships between variables in an EA and the solutions in the population.
es561/1mary)Sumcodetlab
abcode)Summaryelemtntaoi(naMlt6EseitAweahRmplIxEicre
Q4. List of fitness sharing and implicit fitness sharing from paper:Every niching method has its niche(lecture 06)
Fitness sharing ISmall population IIt can find the optima with larger basins of attractions ILess distracted by peaks with small basin of attraction
icrexE?t11/66esmpliIsentticgnirahsssoerovICoramimptcemorpheneisevylevenwithsmallbasfonirttaitcaIInosntideeeladaeprgormsntofatioopulepkaaehcsetaepicwht,Bustreteinofpopehtfineppahtasnotsolaulationiocevarllgroenrtoow?Hulcoepthkseanimrietauoydeted
Implicit fitness sharing ICovers optima more comprehensively even with small basin of attraction IIt is needed a large population to form species at each peak of interest
Fitness sharing ISmall population IIt can find the optima with larger basins of attractions ILess distracted by peaks with small basin of attraction
Q4. List of fitness sharing and implicit fitness sharing from paper:Every niching method has its niche(lecture 06)
1cise66/1eit?Exeretmrnitaluyduoed?HkscoowthlleaepoctoarevgralnroepphaatwhepthifenoitalupoostonsinuB,tExerlempntmeioatMan(esicwAE6RhtiIlaeltbaocedS)muamyr
Voir icon more
Alternate Text