BNJ 2.03aBeginnerDeveloper TutorialChris H. Meyer(revised by William H. Hsu)Kansas State UniversityKDD Laboratoryhttp://www.kddresearch.orgbndev.sourceforge.netContentsn Introductionn Inference Tutorialn Learning Tutorialn Coding the Wizardshttp://bndev.sourceforge.net1BNJ 2.0a Toolsn Offers many new tools in GUI formn This lecture will focus on the Inference and Learning Wizardsn We will also look at components such as evidence, CPT tables, and algorithms behind learninghttp://bndev.sourceforge.netContentsn Introductionn Inference Tutorialn Learning Tutorialn Coding the Wizardshttp://bndev.sourceforge.net2Starting the Inference Wizard (1)n Select Tools ?Inference Wizardhttp://bndev.sourceforge.netStarting the Inference Wizard (2)n Loadexisting networkorGUI networkn You may also select to have an evidence file presenthttp://bndev.sourceforge.net3Using the Inference Wizard (1)n Exact Inference Methods¤LS / Junction Tree¤Variable Elimination(elimbel)¤Loop Cutset Conditioning¤Pearl’s Propagation(tree only)http://bndev.sourceforge.netUsing the Inference Wizard (2)n L-S Algorithm contains 2 main steps:¤Creates a tree of cliques (junction tree) from the Bayesian Network¤Computes probability of cliques, then single-node properties are formed based on probability of cliqueshttp://bndev.sourceforge.net4Using the Inference Wizard (3)(Example of Cliques in L-S algorithm)Courtesy of Haipeng Guohttp://bndev.sourceforge ...
Voir