[Amit99] Y. Amit, D. Geman, „A Computational Model for Visual Selection.” Neural Computation, Vol. 11, pp. 1691-1715, 1999. [Agarwal04] S. Agarwal, D. Roth. “Learning to detect objects in images via a sparse, part-based representation”. IEEE Trans. Pattern Analysis and Machine Intelligence, 26(11):1475-1490, 2004. [Agarwal06] A. Agarwal, B. Triggs, “Hyperfeatures – Multilevel Local Coding for Visual Recognition.” In ECCV’06. [Ballard81] D.H. Ballard, “Generalizing the Hough Transform to Detect Arbitrary Shapes”. Pattern Recognition, 13(2):111-122, 1981. [Bar-Hillel05] A. Bar-Hillel, T. Hertz, D. Weinshall. “Object class recognition by boosting a part based model”. In CVPR’05. [Barnard03] K. Barnard, P. Duygulu, N. de Freitas, D. Forsyth, D. Blei, and M.I. Jordan, "Matching Words and Pictures," Journal of Machine Learning Research, Vol 3, pp 1107-1135, 2003. [Barsalou83] L.W. Barsalou, "Ad-hoc Categories". Memory and Cognition, 11:211-227, 1983. [Bay06] H. Bay, T. Tuytelaars, L. Van Gool, “SURF: Speeded-Up Robust Features.” In ECCV’06. [Beaudet78] P. Beaudet, “Rotationally invariant image operators.” In Proc. 4th Int. Joint Conference on Pattern Recognition, pp. 579-583, 1978. [Belongie01] S. Belongie, J. Malik, and J. Puzicha. “Matching Shapes”. In ICCV 2001. [Beis97] J. Beis & D. Lowe. “Shape indexing using approximate nearest-neighbour search in high-dimensional spaces”, in CVPR 1997. [Berg04a] T.L. Berg, A.C. Berg, J. Edwards, M. Maire, R. ...
Voir