We prove that the number of primes in an interval of length N is at most 2N Log N when N is large enough This is obtained through a sieving process which can be seen as a hybrid between the large sieve and the Selberg sieve and draws on what we call ”local models”

icon

19

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

19

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Abstract We prove that the number of primes in an interval of length N is at most 2N/(Log N +3.53) when N is large enough. This is obtained through a sieving process which can be seen as a hybrid between the large sieve and the Selberg sieve, and draws on what we call ”local models”. 1

  • ???i ?2

  • j?i? n2j

  • ?f?2 ?

  • brun-titchmarsh

  • lemma reads

  • gershgorin disc

  • lemma

  • negative real

  • readily follows

  • indeed


Voir icon arrow

Publié par

Langue

English

Abstract
We prove that the number of primes in an interval of length N is at most 2 N (Log N + 3 53) when N is large enough. This is obtained through a sieving process which can be seen as a hybrid between the large sieve and the Selberg sieve, and draws on what we call ”local models”.
1
Voir icon more
Alternate Text