Vector bundles and theta functions on curves of genus and

icon

12

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

12

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Vector bundles and theta functions on curves of genus 2 and 3 Arnaud BEAUVILLE Abstract Let SUC(r) be the moduli space of vector bundles of rank r and trivial determinant on a curve C . A general E in SUC(r) defines a divisor ?E in the linear system |r?| , where ? is the canonical theta divisor in Picg?1(C) . This defines a rational map ? : SUC(r) 99K |r?| , which turns out to be the map associated to the determinant bundle on SUC(r) (the positive generator of Pic(SUC(r)) . In genus 2 we prove that this map is generically finite and dominant. The same method, together with some classical work of Morin, shows that in rank 3 and genus 3 the theta map is a finite morphism – in other words, every vector bundle in SUC(3) admits a theta divisor. Introduction Let C be a smooth projective complex curve, of genus g ≥ 2 . The moduli space SUC(r) of semi-stable vector bundles of rank r on C , with trivial determinant, is a normal projective variety, which can be considered as a non-abelian analogue of the Jacobian variety JC . It is actually related to JC by the following construction, which goes back (at least) to [N-R].

  • let ?

  • symplectic bundles

  • semi-stable vector

  • classical projective

  • canonical theta

  • theta-characteristic ? ?


Voir icon arrow

Publié par

Nombre de lectures

25

Langue

English

Vectorbundlesandthetafunctionsoncurvesofgenus2and3ArnaudBEAUVILLEAbstractLetSUC(r)bethemodulispaceofvectorbundlesofrankrandtrivialdeterminantonacurveC.AgeneralEinSUC(r)definesadivisorΘEinthelinearsystem|rΘ|,whereΘisthecanonicalthetadivisorinPicg1(C).Thisdefinesarationalmapθ:SUC(r)99K|rΘ|,whichturnsouttobethemapassociatedtothedeterminantbundleonSUC(r)(thepositivegeneratorofPic(SUC(r)).Ingenus2weprovethatthismapisgenericallyfiniteanddominant.Thesamemethod,togetherwithsomeclassicalworkofMorin,showsthatinrank3andgenus3thethetamapisafinitemorphism–inotherwords,everyvectorbundleinSUC(3)admitsathetadivisor.IntroductionLetCbeasmoothprojectivecomplexcurve,ofgenusg2.ThemodulispaceSUC(r)ofsemi-stablevectorbundlesofrankronC,withtrivialdeterminant,isanormalprojectivevariety,whichcanbeconsideredasanon-abeliananalogueoftheJacobianvarietyJC.ItisactuallyrelatedtoJCbythefollowingconstruction,whichgoesback(atleast)to[N-R].LetJg1bethetranslateofJCparameterizinglinebundlesofdegreeg1onC,andΘJg1thecanonicalthetadivisor.ForE∈SUC(r),considerthelocusΘE:={LJg1|H0(C,EL)6=0}.TheneitherΘE=Jg1,orΘEisinanaturalwayadivisorinJg1,belongingtothelinearsystem|rΘ|.Inthiswaywegetarationalmapθ:SUC(r)99K|rΘ|whichisthemostobviousrationalmapofSUC(r)inaprojectivespace:itcanbeidentifiedtothemapϕL:SUC(r)99KP(H0(SUC(r),L))givenbytheglobalsectionsofthedeterminantbundleL,thepositivegeneratorofthePicardgroupofSUC(r)[B-N-R].Forr=2themapθisanembeddingifCisnothyperelliptic[vG-I].Weconsiderinthispaperthehigherrankcase,whereverylittleisknown.Thefirstpartisdevotedtothecaseg=2.Thereacuriousnumericalcoincidenceoccurs,namelydimSUC(r)=dim|rΘ|=r21.1
Voir icon more
Alternate Text