University of Illinois at Urbana Champaign Fall

icon

12

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

12

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

University of Illinois at Urbana-Champaign Fall 2006 Math 444 Group E13 Final Exam. Wednesday, December 13. 3 hours. You are allowed to use your textbook, but no other kind of documentation. Calculators, mobile phones and other electronic devices are prohibited. NAME SIGNATURE

  • electronic devices

  • urbana-champaign fall

  • mobile phone

  • equality sup

  • group e13

  • final exam

  • sup

  • ??


Voir icon arrow

Publié par

Nombre de lectures

21

Langue

English

UniversityofIllinoismobilebutadevictyourUrbana-ChampofaignotherFprall2006oMathother444cumentation.GroupnesE13ctrFinalarExam.d.WSIGNAednesdauseytextb,ok,Decemnobkinderdo1Calculators,3.pho3andhours.eleYonicouesareeohibitealNAMElowedTUREto1.

f: [0,+∞) → R f(x) = sin( x) f [0,+∞)
(0,+∞) f 0
owDenedierenointhatfunctionpsettingShts).a(andontiabletiableb20onyisconIstindierenuousat.?2.
0<α< 1
x> 0
α αα α≤ (x+1) −x ≤ .
1−α 1−α(x+1) x
nX 1 1 1
(u ) u = = 1+ +... .n n α α αk 2 n
k=1
0α = 1−α n∈N
1−α(1−α)(u −1)≤n −1≤ (1−α)u ≤ (1−α)u .n n−1 n

α−1 α−1(u ) n u lim n un n n
oneallforandisonethat(30evvwproLettoa)cotot(appliedfore(a)vomputeooinhasthat(b)DenequalithasinenotthenUseergenulabutformallhethattShoyis,bcsequence.Prots)vpeiesab.3. Z x1
f [0,+∞) x> 0 g(x) = f(t)dt
x 0
g (0,+∞) g 0
g (0,+∞) x> 0
f(x)−g(x)0g (x) = .
x
p,andthat,.tinonforhasLetaforlimiandtShoathasuouseinon(30lthatcomputethiswlimit.that(b)allSho(a)wonethatts)tbiscondierenuoustiable;onaconlissetoin;4.
a,b a<b f: [a,b]→R
sup{f(x): x∈ (a,b)} = sup{f(x): x∈ [a,b]} .
sup{f(x): x∈ (a,b)} sup{f(x): x∈ [a,b]}
sup{f(x): x∈ (a,b)}≤ sup{f(x): x∈ [a,b]}
f(a) = sup{f(x): x∈ [a,b]} f(a) = sup{f(x): x∈ (a,b)}
f(b) = sup{f(x): x∈ [a,b]}
sup{f(x): x∈ (a,b)} = sup{f(x): x∈ [a,b]}
woand(b)ProtWkExplainPicequalit.tCaneyShoou?ts)eointeshoawsimilartinresultletwhen(c)pthat(30(a)n(d)umvbtheersysucthahwthattoyanwhehasuous.oconalsboneexist.thatAssumew.Show.proandvreal.5.
0<λ< 1 f:R→R f(λx) =λf(x) x∈R
f(0) = 0
f 0 a∈R f(x) =ax x∈R
nf(λ x) 0a =f (0)
nλ x
f 0
thatthereexistshruevointhepe(30wisorkstiablevwandShothat.?ts)(a)atfortiable(c)dierenabforstillall.isbLetsucthateoneProlongerShothatthatcan.ythatouwsa.yIsofresulttheosequenceeAssumet(b)if.noHint.assumesallWhatsucdierenhatthat?6.
f: [0,1]→ [0,1] x∈ [0,1]
f(x) =x
E ={x∈ [0,1]: f(x)>x} 0∈E x = sup(E)
(30(notiont;Shocon.oneHint.SConsideressthewsetassumefunctinwwproinwthatshohthatsuccants)thatLetuous).b.ehoanthatexistsilythereathatnecincreasingorks.7.
X P(X) X
P(X) ={A: A⊂X} X,Y f: X→Y
ˆ ˆf:P(X)→P(Y) f(A) =f(A) A⊂X
ˆf f
−1˜ ˜ ˜f:P(Y)→P(X) f(B) =f (B) B⊂Y f(∅)
˜f f
A,B
X A⊂B B⊂A x∈X
x∈A⇒x∈B x∈B⇒x∈A
oneis:wandinjectivdebif,toandsubsetsonlyeif,ustset,funisexercise,injectivthee.that(b)aSimilarlyhas,.denewawfunction(a)aeiseifouthatbRecallwingthatshowwShor.ebequal,yprothesbLetyinsoneehtfortingats)oall,foresetsolvwhosethiselemenytsneedoinrememperarefollotheprinciplesubsetstoforwalltofo;oinoftingsdenotest(30aretoneetosvythat.,Shoandwnothat;botherotherords,isminjectivseoif,thatandallonlyfunctionif,Denewn.isctisurjectivae.andNote.bTsetso.Compute.

Voir icon more
Alternate Text