University of Illinois at Urbana Champaign Fall

icon

4

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

4

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

University of Illinois at Urbana-Champaign Fall 2006 Math 380 Group G1 Midterm III. Monday, December 4. 50 minutes You are not allowed to use your lecture notes, textbook, or any other kind of documentation. Calculators, mobile phones and other electronic devices are also prohibited. 1.(10 points) Let ? be the curve of equation x(t) = t, y(t) = esin(2pit), z(t) = ln(1 + t2), for 0 ≤ t ≤ 1, oriented in the direction of increasing t. Compute ∫ ? (3x2 + 3yz + ez)dx + (3xz + 3y2)dy + (3xy + xez)dz. Correction. Looking at the curve, and the line integral, one can guess that there is a trick here ; indeed, if one lets f(x, y, z) = x3 + y3 + 3xyz + xez then the integral is equal to ∫ ? ∂f ∂x dx + ∂f ∂y dy + ∂f ∂z dz. Hence the integral is equal to f(B)? f(A), where A,B are the endpoints of the curve (B is the point corresponding to t = 1, A correspond to t = 0).

  • pointing away

  • divergence theorem seems

  • urbana-champaign fall

  • y6 ?

  • normal vector

  • ∂f ∂x


Voir icon arrow

Publié par

Langue

English

1.
sin(2πt) 2γ x(t) = t y(t) = e z(t) = ln(1 + t ) 0 ≤ t ≤ 1Z
2 z 2 zt (3x +3yz +e )dx+(3xz +3y )dy +(3xy +xe )dz
γ
Z
∂f ∂f ∂f3 3 zf(x,y,z) = x +y + 3xyz +xe dx+ dy + dz
∂x ∂y ∂zγ
f(B)−f(A) A,B B
t = 1 A t = 0
Z
2 z 2 z(3x +3yz +e )dx+(3xz +3y )dy +(3xy +xe )dz = (1+1+3ln(2)+2)−(0+1+0+0) = 3+3ln(2) .
γ
orinthetegral,Io,neecanofgoinuess).thatlethererisallaendptricotherktohereto;ofindeed,tifdoneuteslets,liGroupthetandaree,tscurvethetheatcorrespokingnesLocorrespCorrection.cumentation..yieldsComputeother.oincreasingeofusedirectionaltheouin50tedborienMondathenMidtermtheMathinaigntseelegraltheisoinequaloftocurv,(foris,p,t,ondingequationandofphoemobilecurvondtheCalculators,eobThisLetdets)kindoinanypok,(10extbd.notes,ectur.yourHencetotlowehnotearinYtegralminis4.equaletoDecemohibityrI.pIalsoG1e380ar2006esFdevicUrbana-Champonica,IllinoiwhereUniversityctrn2.
2 2S x≥ 0 y ≥ 0 x +y = 1 0≤ z ≤ 2ZZ
3 z 2 2~ ~F(x,y,z) = (x +sin(yz)+e ,x+z ,3zy −x) F ·~ndσ
S
∂F ∂F ∂Fx y z 2 2~(F) = + + = 3x +0+3y .
∂x ∂y ∂z
2 2 2x +y = r
ZZ Z Z Z Z Z2 1 π/2 2 1
π π 3 3π2 3~F ·~ndσ = 3r ·rdrdθdz = 3r drdz = ·2· = .
2 2 4 4S z=0 r=0 θ=0 z=0 r=0
ideareandtheawLoaappysurfacetoingo.onethatgoenhGivcylinder,(10isp.oin.ts)divLet;bofeying,inwatecylindricalobtainclosed(don'taforget)theletJacobiantegrationdeterminanComputetCorrection.!)oking:hastheindeed,coaordinatesdolikdomaineadivquarter-cylinderetheseemstheoremofergencequationthe,l,tegral,,e(viewtedasSince3.
2 2 2S 1 (x,y,z) x +y +z = 1 z≥ 0ZZ
(2xy +z)dσ
S
x = sin(ϕ)cos(θ) y = sin(ϕ)sin(θ)
πz = cos(ϕ) 0≤ θ ≤ 2π 0≤ ϕ≤ dσ2
     
2−sin(θ)sin(ϕ) cos(θ)cos(ϕ) cos(θ)sin (ϕ)
∂P ∂P 2     × = cos(θ)sin(ϕ) × sin(θ)cos(ϕ) = sin(θ)sin (ϕ)
∂θ ∂ϕ
0 −sin(ϕ) cos(ϕ)sin(ϕ)
sin(ϕ)
Z Z Z Zπ/2 2π π/2 2π sin(2ϕ)3 3I = 2sin (ϕ)cos(θ)sin(θ)+sin(ϕ)cos(ϕ) dθdϕ = sin(2θ)sin (ϕ)+ dθdϕ
2ϕ=0 θ=0 ϕ=0 θ=0
Z π/2 sin(2ϕ)
I = 2π dϕ = π .
2ϕ=0
Correction.,theisofresoothet:ecductv;thisComputeofusinsisco(15,pisointhets)this,Letdeterminebwe.theLetuppuseerusualhemisphereystemofsphericalradiusordinates,,i.e;thedomainset,ofcross-propcomputeoinwtsforsuc.htothethatneedtegralnoeandW.Themagnitude4.
3S x+y +z = 1 x≥ 0 y≥ 0 z≥ 0 ZZ
2~ ~ ~F F(x,y,z) = (x+y +z,y−1,z) F ·~ndσ
S
3z = 1−x−y
3x,y 0≤ x 0≤ y x+y ≤ 1
2 2 2 3 2 2 3~F·~ndσ =±(x+y +z,y−1,z)·(1,3y ,1)dxdy = (x+y +z+3y −3y +z)dxdy = (−x−2y +y +2)dxdy
3f(x,y,z) = x+y +z
S z x,y f
f S f
f
3Z Z Z1 1−y 1 3 2 (1−y )2 3 2 3 3 3 3
I = −x−2y +y +2 dxdy = − −2y (1−y )+y (1−y )+2(1−y ) dy
2y=0 x=0 y=0
Z 1 3 3 3 3 2 1 206 2 5
I = − y −2y +2y dy = − − + = .
2 2 2 14 3 3 21y=0
areallyfromneedorigintothemak(beEvaOneskbetc,hsurface(whicincrease).goingowaouldisb,ebhardnormalin.thattcase)a:assimplyit,wourissurfaceoishoiceanyequip;otennaturaltial.ofectorthefromfunctionpisethatsurfaceonets).theuseisioriginathefromomthervingfe'llynatuallywobtainain,factseoionitorieniThesandnormalentodomaintherepresengradientotit;Oneat.adntheyorigin,paoindotoontedting,,equationwhentheoinLetincreasest(withecapfornormalh)sthegoingincreaseswtoyo,thewhicishsamemehaansgivthatWthediscussgradienitclass.ofensurface,,isepthatoinurtingtegralup.that,Also,theoncomesavstraighabttlinetfromofthecoriginobtainsto.a,pboingivtforontheourtation,cartesiantheusefunctionhereenisissoconhastinCorrection.uallyComputeincreasing.yHenedeeldncevtheenormalandptheoinytingwatingesn'toinwseeaectoryvfromwiththenoriginoriis,the,oneofgivTenethis,bpuponeoingradienb(15ytheh

Voir icon more
Alternate Text