Suffolk Association for Continuing / Community Education WWW.SACCE.ORG

icon

21

pages

icon

English

icon

Documents

Écrit par

Publié par

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

icon

21

pages

icon

English

icon

Documents

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

  • cours - matière potentielle : listings
  • cours - matière potentielle : offerings
  • cours - matière potentielle : to the listing
  • cours - matière potentielle : titles
  • cours - matière potentielle : title
  • expression écrite
Suffolk Association for Continuing / Community Education WWW.SACCE.ORG Dear SACCE member: SACCE is pleased to include the course offerings of our institutional members on our web site. Following are course titles that will be found on the SACCE web site's course listings. Please click on the box next to each course title offered at your institution. Upon completion, you may email the listing to . If you choose to print the listing and complete it by hand, simply check the box preceding the course titles you expect to offer and mail the completed form to: SACCE c/o Debra Montaruli Wilson Tech 17
  • abstract painting  acrylic painting  antiques  antique appraisal  art appreciation  art history  art of mehendi  art tours  calligraphy  cartooning  ceramics  collage  colored pencils  decorative painting  drawing 
  • interior design with feng shui  japanese brush  jewelry making  landscape painting  life drawing  oil painting  one stroke painting  paint like a pro  painting  painting on silk  pastels  pottery  print making  rangoli
  • mature driving  ny state 5­hour pre­licensing  aviation  aircraft mechanics  aviation  personal appearance  bridal make­up  color analysis  cosmetic and laser surgery  cosmetology  esthetics  hair braiding  hair cutting  hair imaging  make­up 
Voir icon arrow

Publié par

Nombre de lectures

48

Langue

English

T ex t Su mma riz a ti on
Yo un, K i m
C S 29 8
Sa n J o se St a t e Un i v e rsi t yO utli ne
• Int ro d uct i o n
• T h e o ry a nd C o nc e p t s
• Des i g n a nd Imp l e ment a t i o n
• Summa ry Ev a l ua t i o n
• C o nc l us i o nInt ro d uct i o n
• Mot i v a t i on
– Ne e d f o r an e f f ic i e n t t e x t s u m m ar iz e r d u e t o t he o v e r w he l m in g am o u n t o f
t e x t u al in f o r m at io n av ail ab l e o n t he We b .
– U s e f u l f o r a r e ad e r t o ha v e acce s s t o a co n ci s e s u m m ar y t ail o r e d t o his o r
he r in t e r e s t s t o q u ic k l y b r o w s e t hr o u g h a l ar g e n u m b e r o f b l o g s it e s .
– T he u t il iz at io n o f S Q L , w hich can b e e as il y co n v e r t e d in t o P ig L at in , an
S Q L -l ik e d at a t r ans f o r m at io n l ang u ag e d e v e l o p e d at Yaho o and al l ow s f or
m as s i ve pa r al l e l pr oce s s i n g of l ar ge da t a s e t s ac r os s c l us t e r s by
c om pili n g qu e r i e s i n t o M ap R e du c e j o b s an d e x e c ut i n g t he m i n H ad o o p.
• G oal
– C r e at e a t e x t s u m m ar iz e r t o p r o v id e co n d e n s e d v e r s io n s o f o r ig in al t e x t b y
id e n t if y in g t he b e s t ap p r o x im at io n o f o r ig in al t e x t .T h e o ry a nd C o nc e p t s
• Th e Lan c z os A lgo rit h m
– C an d e t e r m in e t he e ig e n v al u e s f o r a l ar g e s p ar s e m at r ix e f f ic ie n t l y t hr o u g h
t he e m p l o y m e n t o f t he L ancz o s r e cur s io n , w hich co n v e r t s t he o r ig in al m at r ix
A in t o t r id iag o n al m at r ix T t hr o u g h a f in it e n u m b e r o f o r t ho g o n al s im il ar it y
t r ans f o r m at io n s .
– T he e ig e n v al u e s f o r t r id iag o n al m at r ix T ar e ap p r o x im at e t o t ho s e o f t he
o r ig in al m at r ix , A.
– T he e ig e n v e ct o r s o f A can b e f o u n d t hr o u g h t he m u l t ip l ic at io n o f t he
e ig e n v e ct o r s o f T b y t he L ancz o s v e ct o r s acq u ir e d f r o m t he r e cur s io n .
– T he n u m b e r o f ar it hm e t ic al o p e r at io n s r e q u ir e d t o g e n e r at e a t r id iag o n al
m at r ix is p r o p o r t io n al t o t he n u m b e r o f n o n z e r o e n t r ie s o f A, w hich s av e s
r u n n in g t im e f o r a l ar g e s p ar s e m at r ix .T h e o ry a nd C o nc e p t s (co nt .. )
• SVD (s i ng ular v a l ue d e c o mp o si t i o n)
– T h e SVD th eo rem i s u s u a l l y p res ented a s :
TA  U S Vnxp nxn nxp pxp
T T T TUU  U U  I V V  VV  Iw h ere a nd
– B a s ed o n th e l i nea r a l g eb ra th eo rem th a t a rec ta ng u l a r m a trix A c a n
b e d eco m p o s ed i nto th e p ro d u c t o f th ree m a trices ( a n o rth o g o na l
m a trix U , a d i a g o na l m a trix S, a nd th e tra ns p o s e o f a n o rth o g o na l
m a trix V) , a nd rec o ns tru c ted b y m u l tipl yi ng th e th ree m a trices
to g eth er.T h e o ry a nd C o nc e p t s (co nt … )
• SVD (co nt … )
T– C al c ul at in g SV D c o n sist s o f fin d in g e ig e n val ue s an d AA
T T TA A AAe ig e n ve c t o r s o f an d . Th e e ig e n ve c t o r s o f A A
make up t h e c o l umn s o f U an d t h e e ig e n ve c t o r s o f
make up t h e c o l umn s o f V . Th e sin g ul ar val ue s in S c o n t ain t h e
T Tsq uar e r o o t s o f t h e e ig e n val ue s fr o m o r an d ar eAA A A
p l ac e d al o n g t h e d iag o n al o f S in d e sc e n d in g o r d e r .T h e o ry a nd C o nc e p t s (co nt … )
• SVD (co nt … )
– I t i s a m eth o d f o r red u c i ng a h i g h - d i m ens i o na l s et o f d a ta to a
l o w er- d i m ens i o na l s et, w h i c h a l l o w s u s to i d enti f y w h i c h d a ta
exh i b i t th e m o s t va ria tion th ro u g h a n o rd eri ng o f th e d i m ens i o ns .
– I t g i ves u s th e b es t a p p ro xi m a tion o f th e o rigina l d a ta b y s i m p l y
i g no ring d i m ens i o ns b el o w c erta i n th res h o l d s , a nd i n d o i ng s o th i s
a p p ro a c h red u c es th e vo l u m e o f c o ntent, w h i l e m a i nta i ni ng th e
m a i n rel a tions h i p s th a t a re p res ent.T h e o ry a nd C o nc p e t s (co nt … )
• Eigenv a l ue s a nd Eigenv e c t o rs
– I f a no nzero vect o r s a tisf i es th e eq u a tion b el o w , vect o r v i s c a l l ed
a n ei g envecto r, a nd s c a l a r  i s c a l l ed a n ei g enva l u e.
 
= w h ere A i s a s q u a re m a trix.A v  v
– E i g envecto rs a nd ei g enva l u es a re i m p o rta nt i n m a ny a rea s o f
m a th em a tics a nd p h ys i c s .
– E i g envecto rs a nd ei g enva l u es c a n tel l u s s o m eth i ng i m p o rta nt
a b o u t th e m a trix s u c h a s u nd erl yi ng o r h i d d en s tru c tu re o f m a trix.T h e o ry a nd C o nc e p t s (co nt … )
• Fo r my p ro j e c t :
– Wo r k e d w it h a w o r d -b y -se n t e n c e m at r ix A, w he r e A r e p r e s e n t s t heij
f r e q u e n cy o f a p ar t ic u l ar w o r d ap p e ar in g in e ach s e n t e n ce .
T
– U s in g S V D, A can b e d e co m p o s e d in t o t hr e e m at r ic e s ( U , S , and V )
U– Each n u m b e r in d ic at e s ho w s t r o n g l y r e l at e d a w o r d is t o t he t o p ic o rij
co n ce p t r e p r e s e n t e d b y s e m ant ic d im e n s io n , w hil e e ach n u m b e r Vij
in d ic at e s ho w s t r o n g l y r e l at e d s e n t e n ce is t o t he t o p ic r e p r e s e n t e d b y
s e m ant ic d im e n s io n . Each n u m b e r o n t he d iag o n al o f S in d ic at e s t he
im p o r t ance o f t he co r r e s p o n d in g s e m ant ic d im e n s io n .T h e o ry a nd C o nc e p t s (co nt … )
• T o e x t r ac t s e nte nc e for e ac h t opi c for t h e s u m m ar y i n m y
pr oj e c t :
TE a ch e n t ry i n t h e m a t ri x g i v e s i n fo rm a t i o n a b o u t h o w clo s e ly t h e s e n t e n ce i s re lat e d t oV
t h e g i v e n co n ce p t . A h i g h e r v a lu e m e a n s t h a t t h e s e n t e n ce i s m o re clo s e ly re lat e d t h i s
co n ce p t . Thu s , t h e s e n t e n ce t h a t i s m o s t re lat e d t o e a ch co n ce p t i s ch o s e n fo r t h e
s u m m a ry u n t i l a p re d e fi n e d n u m b e r o f s e n t e n ce s i s e x t ra ct e d .
Sentence 1 Sentence 2 Sentence 3 Sentence 4
Topic 1 0.22 1.51 2.11 7.67
Topic 2 5.33 3.22 1.10 2.43
Topic 3 3.43 5.34 0.74 0.71
Topic 4 2.11 1.31 9.54 2.33

Voir icon more
Alternate Text