5
pages
Français
Documents
2008
Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres
5
pages
Français
Documents
2008
Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres
T ES1
f [−5;5]
f
f(x) = 0
f(x)> 1
′f (x) = 0
f
S(1,2) T(−1,0)
M(0,2)
(MS) (TM)
T
′ ′f (1) f (−1)
M S
φ ]1;+∞[
de
fonction
e
v
sur
ourrait
l'in
,
terv
hapitre
alle
e.
la
e.
te
.
repr?sen
terv
tre
et
t
.
t
(a)
tel
T
et
rouv
tes
er
ble
l'image
de
de
-1
oir
par
2
graphique
le
.
(b)
es
R?soudre
la
graphiquemen
p
t
lors
l'?quation
qui
Le
les
1
he
1
tr?s
1.
t
1
la
rouv
(c)
un
R?soudre
2
graphiquemen
?
t
2
l'in?quation
tableau
fournir.
d'une
?
sur
est
dev
D?riv
une
qcm)
(d)
qui
R?soudre
(en
(aux
du
d'une
?preuv
son
1
sur
onses
r?p
Le
os
oin
v
des
de
sortir
p
est
2.
queb
droitesb
de
our
P
pro
es).
QCM,b
son
1
tangen
1
?
Dans
le
T
graphique
er
ensem
tre
est
on
et
a
trac?
partir
la
maison,
repr?sen
tation
V
graphique
le
d'une
de
fonction
ariation
Primitiv
fonction
.
d?nie
Les
l'in
p
alle
oin
Ce
ts
DM
ation-
graphiquemen
.
t
l'?quationx 1 +∞
′φ (x) −
+∞
φ(x) 2
2g ]1;+∞[ g(x) = (φ(x))
g ]1;+∞[
g ]1;+∞[
g ]1;+∞[
g +∞
√
y = 2 y = 4 y = 2
C
f [0;10] A B D C
A(0;4) B(0,5;0) D(2,5;4,6)
C D T
(1;5) (AT) C A
T D
B
A
e
p
;
sur
abscisses.
est
?re
eut
te.
de
3
tangen
ne
La
est
e
e
parall?le
de
p
la
est
les
la
en
repr?sen
p
tation
un
graphique
tan
dans
La
un
admet
rep
tangen
?re
l'axe
orthonormal
donne
d'une
t
fonction
ordonn?es
ariation
que
d?nie
droite
et
On
d?riv
?
able
.
sur
sur
la
v
admet
de
rep
sens
dans
le
t
repr?sen
pas
.
Les
La
p
en
oin
une
ts
te
fonction
?
2
des
d?nie
On
et
le
sur
oin
appartiennen
pr?ceden
t
?
question
par
dans
:
fonctions
.
La
est
m?mes
reprend
:
est
d'?quation
te
droite
la
te
teb
surb
enb
asymptoteb
our
On
,′f (0) = 9
′f (5)> 0
f [0;10]
0,5
f [0;10]
[0;2,5]
f [0;10]
2,5
u [0;4]
C
(0;−3) (1;0) (2;1) (3;0)
(4;−3)
2
√
f = u f
f ]0;4[
f
′f (2) = 0
x = 2
f
f ]−6 ; −3[∪]−3 ; +∞[
f
ensem
de
la
fonction
V
dans
d?riv
le
F
rep
est
?re
p
orthonormal
aux
droite
Elle
V
passe
ble
par
elle
les
s'ann
p
aux
oin
n
ts
V
de
terv
F
ordonn?es
F
resp
tativ
ectiv
es
d?riv
:
oute
sur
un
de
d?nie.
e
sur
primitiv
oute
.
T
p
,
e
aux
sur
F
de
rai
our
V
rai
aux
sur
,
rai
F
d?nie
rai
fonction
V
asymptote
te
e
sur
de
,
aux
sur
Une
l'in
d?nie
de
sur
e
rai
primitiv
e
et
um
oute
o?
T
est
terv
la
aux
d?nie
F
est
alle
e
.
La
Elle
rai
admet
F
au
ule
p
est
oin
ositiv
t
ou
d'abscisse
ulle
rai
son
une
ble
tangen
d?nition
te
rai
parall?le
F
?
V
l'axe
alle
des
l'in
abscisses.
able
On
V
et
alors
aux
la
La
fonction
d'?quation
de
une
sur
est
repr?sen
?
graphique
Le
repr?sen
de
e
ariations
Soit
la
rai
tation
F
aux
aux
le
4
an
fonction
able
est
en
et
tout
able
p
l'ensem
oin
T
t
V
de
primitiv
l'in
en
terv
lo
alle
maxim
ouv
admet
ert
V
.
est
tableau
.
v
On
de
admet
fonction
que
est
suiv
:
t
d?riv
3
estx −4 −3 2 +∞−3,5−6
+∞ 58
0
f −∞7 3
limf(x) = +∞ lim f(x) = 5
x→+∞x→5
lim f(x) =−∞ lim f(x) = 0
x→−6 x→−3
x<−3
f
x = 5 y =−3 x =−3 y = 5
y = 8 y = 3 x =−6 y = 5
]−6 ; −3[∪]−3 ; +∞[ f(x) = 4
0 1
2 3
f R
(C )f −→ −→
, ı ,
f (C )f
• f
]−∞ ; 0] [2 ; +∞[
• (C )f
• (C )f
(C ) +∞f
′f f F f R F(0) = 0
5
4
4
3
3
(C )f
2
2
1
1
−→
0
−→
−2 −1 1 2 3 4 5 6 7ı
-1
−1
-2 -1 0 1 2 3 4 5 6 7 8
4)
gure
eut
4
R?p
mon
l'origine
tre
:
une
elle
partie
:
de
oin
sa
tangen
est
e
fonction
repr?sen
A
tativ
d?nie
e
solution
.
et
et
e)
:
droite
D
?
dans
et
un
:
rep
note
?re
R?p
ortho-
e
normal
R?p
onse
sur
O
onse
R?p
R?p
et
passe
:
rep
C
les
onse
A(1
R?p
B(2
.
.
et
A)
:
en
.
On
onse
disp
des
ose
?
des
onse
renseignemen
.
ts
onse
suiv
?e
an
on
ts
la
sur
:
la
que
fonction
que
B
.
et
d?riv
la
fonction
solutions
e
onse
onse
de
R?p
2.
et
par
:
du
:
?re
A
par
la
p
fonction
ts
onse
;
est
et
;
t
;
la
te
(O
sur
est
l'in
te
terv
A
alle
la
[0
e
;
D
2],
R?p
elle
l'axe
est
abscisses
asymptote
t
.
C
san
en
te
:
sur
On
l'in
B
terv
la
alle
d?riv
R?p
de
:
et
d'?quation
app
droites
.
les
primitiv
asymptotes
de
et
sur
sur
telle
l'in
onse
terv
:
alle
armer
our
.
3.
Dans
5
able
B
et
p
l'ensem
1.
la
:
p
solutions
admet
onse
de
On
:
ble
onse
D
R?p
R?p
l'?quation
la
C
R?p
e
solution
On
ariations
e
O
admet
La
V
:
repr?sen
A
A
e
B
tativ
;
La
+
+lim f(x) =−∞
x→+∞
f(x) = 0,1 R
′f (1) =f(1)
F R
F(5)>F(6)
′f
f ]0 ; +∞[
[2 ; +∞[
′f f ]0 ; +∞[
Γ f
1 7
; −2 ; 0
2 2
4
3
3
2
2
13 11 ;
2
0Γ
0 1 2 3 4 5 6
1 2 3 4 5 6-1
−1Γ
Γ-2
−2
-3
−3
-4
−4
f(x) =−1 ]0 ; +∞[
1
7
′f f
7
f 1 ;
2
p
f(x) x ]0 ; +∞[
.
d?riv
exactemen
?e
suivantes,
de
t
ar
6
sur
le-ci
l'in
terv
4.
alle
La
p
C
es
ar
donn?
alle
informations
2.
les
?gal
utilisant
signe
.
son
La
On
terv
e
.
en
Pour
repr?sen
informations
tativ
e
e
ou
de
te
la
sur
fonction
.
suivantes,
la
dans
.
un
on
rep
alle
?re
de
orthonorm?
sur