Dérivation Activité 5

icon

6

pages

icon

Français

icon

Documents

2009

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

icon

6

pages

icon

Français

icon

Documents

2009

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

Consultez les archives des sujets et les cours 2009/2010 pour la classe de terminale ST2S.
Voir icon arrow

Publié le

01 janvier 2009

Langue

Français

T ST2S
2f(x) = 3x+2 g(t) = 3t +4t−1000
2 1 1t t 2i(x) = t + t+21h(x) = + −2 3 43 4
3 1 3 1 2j(t) = t −3t k(t) = t − t
3 2
2l(x) = (3x−1)(−2x +3) m(t) = (1−3t)
3 7n(x) =−5x −5(1−2x)x p(x) =
x
1 22q(t) = t+ r(x) = x −
t x
√ √2 3a(t) = 3 t b(x) = x −5 x
9
2f ]0;+∞[ f(x) = 2x +3x−5
′x∈]0;+∞[ f (x)
f
f
f
f
S(1,−2) T(−1,0)
M(0,−2) (MS)
(TM)
′ ′f (1) f (−1)T
M S
la
tativ
Calculer
e
de
de
5
?
et
au
D?terminer
p
la
oin
que
t
T
d'abscisse
tation
1.
oin
3.
tout
D?terminer
par
ensuite
p
l'?quation
d?nie
de
2
la
?
tangen
1
te
tes
?
d'une
la
Les

l'?quation
e
.
repr?sen
our
tativ
.
e
t
de
e.
te
t
au
ation
p
est
oin
droites
t
et
d'abscisse
tangen
4.

4.
er
D?terminer
er
enn
suiv
l'?quation
repr?sen
de
graphique
la
fonction
tangen
.
e
p
1
ts
la
alors

2.
e
,
repr?sen
et
tativ
p
e
1.
de
A
la
son
au
sur
p

oin
Le
t
oin
d'abscisse

10.
D?riv

sur
3
etb
telb
les

Soit
repr?sen

applications
la
de
d?riv
son
ationb
t
1
tes
1
la
Dans
e.
le
rouv
graphique


D?riv
tre
les
on
fonctions
a
an
trac?
la
tangen
.
te
?f [−5;5]
′f (x) = 0
f
′[−1 ; 5] f f
y
4
′3 f (4,5) = 0
′f (3) = 02
′f (3) = 4,5
1
x
−1 1 2 3 4 5
−1
−2
−3
−4
f T
Cf
[−1;7]
T
T(2,6) Cf
T
A B
b
.
t
fonction
sur
la
Le
de
tation
?e
d'une
d?riv
te
la
tale
note
ue
On
note
4,5
terv
4,5

tre).


graphique
Une
tangen
seule
1
des
R?soudre
trois
sa
prop
que
ositions
alle
oir
terv
2
sur

.
:
p
Prop
par
osition
:
A
tre
:
De
(v
admet
alle
hori-
terv
1
l'inb
sur

able

d?riv
par
et
repr?sen
d?nie
graphique,
Prop
l'on
osition
.
B
,
:
l'in
fonction
alle
d'une
l'in
e
fonction
tativ
e
repr?sen
On
e
le

oin
Prop

osition
ses
C
ordonn?es
:
la
la
repr?sen


On
.
5
plus,

1
.
une
l'?quation
te
t
zon
graphiquemen
en

.
6
1
Onb

4
une
fonction

estf

′ ′ ′ f (2) = 5 f (2) =−1 f (2) = 0
′ ′ ′ f (3) = 0 f (3) > 0 f (3) < 0
2t f f(t) =−0,1t +2t+30
f
40
4039
38
37
36
35
34
33
32
31
30
2930
28
27
26
25
24
23
22
21
20
2019
18
17
16
15
14
13
12
11
10
109
8
7
6
5
4
3
2
1
0
0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930
10 20 30
t t f(t ) f(t )1 2 1 2
f(t )−f(t )2 1 t
t −t2 1
′f (t)
′f (t)
fonction.
rep
d?riv
3
autre
?re
2.
Gr

l'unit?
p
est
que
de
?t?
e
instan
tativ
Gr
repr?sen
ondan
e


er
La
?
.
our
que
bre
telle
ort
,
1.
fonction
3
la
aphique
par
aphique
donn?e
hauteurs
est
Quelle

rapp
de
t
dixi?me
graphique
en
T
exprim?
t
,
d?duire
temps
te
du
nom
fonction
le
en
ue
m?tre,
par
en
notre
exprim?e
fonction
pierre,
deux
la
ts,
de
aphique
hauteur
2
La
et
pierre.
1
une
Gr
loin
les
au

lance
tes.
Elle
est
m?tres.
du
30
ort
de
?
hauteur
ondan
une

?
le
mer
rouv
la
fonction.
de
une
au-dessus
an
falaise
En
d'une

haut
repr?sen
en
p
t
tout
tien
bre
se
,
ersonne
nom
p
en
Une
obten
1.
a
Soien
rapp
t
?
7
pierre.

Calculer
et
La
3.
2.
donn?e
.
dans
lef
3f [0;1,75] f(x) =−0,5x +1,5x+1
′ ′f f f (x) x∈ [0;1,75]
′x∈ [0;1,75] f (x) =−1,5(x−1)(x +1)
′f (x) [0;1,75]
f [0;1,75]
−210
x
f(x)
C f C
−1g.L x
3f(x) =−0,5x +1,5x+1 x [0;1,75]
′ ′ ′f (0,5) f (1) f (1,5)
−11g.L
−11,25g.L
−10,75g.L
1.
,
que,
quelle
terv

D?terminer
2
aleur
de
h
out
v
b
Calculer
Au
T
6.
p
?
glyc?mie
maximale
heures)
hauteur
T
sa
p
?
glyc?mie
e-t-elle
,
trouv
t
se
s'?carte
pierre

la

t
p
instan
fonction
.
la
3.
sa
Etudier
.
le
de
signe
terv
de

quel
min
A
ersonne
5.
de
?
par
absolue)
20.
sur
nom
l'in
de
terv
25%
alle
de
aleur
v
v
moins
(en
le
?e
doit
?lev
p
plus
A
la
:
est-elle
une
.
pierre
4.
donn?e
Etablir
our
le
Mon
tableau
?
de
er
v
o?
ariation
dans
de
tout
pierre
?
sur
.
l'in
t
terv
auquel
alle

la
maximale.
de
.
vitesse
d?riv
la
p
t
et
instan
t
quel
.
A
terpr?ter
.
?
5.
mo

glyc?mie
et
plus

la
le
y
tableau

de
Partie
v
que
aleurs
plus
suiv
v
an
l'homme.
ts
les
dans
dans
lequel
la
on
?viter
fera
4.
gurer
?rieure
des
Etude
v
la
aleurs
app
appro
erglyc?mie

inf?rieure
h?es
de
arrondies
(en
?
est
4.
par
.
tout
fonction
p
la
trer
.
2.
de
hauteur
0
7.
0,25
rouv
0,5
l'?quation
0,75
la
1
tangen
1,25
arie
1,5
l'in
1,75
alle
ariations
our
v
te
de
la
tableau
e
6.
1.
On
l'instan
d?signe
(en
par
utes)
le
la
la
de

p
e
est
repr?sen
2.
tativ
Calculer
e
au
de
?e
Dresser
fonction
.
la
Construire
oin
3.
d?signe
trie
On
?
.
les
d'abscisse
ommes
T

Commen

in


de
bres
ble
3.
p
oute
4
dication
-
la
Applic
qui
ation
de
Dans
de

de
partie,
v
on
mo
utilise
enne
les

r?sultats
droite.
pr?c?den
8
Quelle
pro
est
o
el?e
des
yp
ertubation
(a)
ou
graphiquemen
gra
le
e
les
hez
terv
D?terminer
de
ou
(en
in
p
alles
t
lequel
quels
rester
p
glyc?mie
observ
our
est
toute
h
ertubation.
erglyc?mie.
Une
M?me
sup
p
?
l'h
-

d'une
9
Soit

fonction
?rativ
est
sp
el?e
dans
yp
biologique
;

glyc?mie
de
?
est
vitesse
par
la
temps
?
est
de
ommes.
ts
app
p
h
our

?tudier
D?terminer
la
t
glyc?mie
ou
d'une
in
p
alles
ersonne
temps
observ
heures)
?e
endan
apr?s
les-
ingestion
la
de
ersonne
sirop
?e
de
en
glucose.
yp
On
(b)
supp
question
ose
our
que
yp


Voir icon more
Alternate Text