Topological centres for group algebras actions and quantum groups

icon

191

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

191

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Topological centres for group algebras, actions, and quantum groups Matthias Neufang Carleton University (Ottawa)

  • canonical extensions

  • quantum group

  • ?? a??

  • arens products

  • y2f ?

  • algebraic description


Voir icon arrow

Publié par

Langue

English

Poids de l'ouvrage

1 Mo

Topological centres for group algebras,
actions, and quantum groups
Matthias Neufang
Carleton University (Ottawa)Topological centre basics Topological centre problems Topological centres as a tool
1 Topological centre basics
2 Topological centre problems
3 Topological centres as a toolTopological centre basics Topological centre problems Topological centres as a tool
1 Topological centre basics
2 Topological centre problems
3 Topological centres as a toolA Banach algebra; as Banach space:A,!A
9 2 canonical extensions of product toA (Arens ’51)
X; Y2A , f2A , a; b2A
hX2Y; fi = hX; Y2fi
hY2f; ai = hY; f2ai
hf2a; bi = hf; a bi
. . . and the other way around:
hX3Y; fi = hY; f3Xi
hf3X; ai = hX; a3fi
ha3f; bi = hf; b ai
Topological centre basics Topological centre problems Topological centres as a tool
Arens products: Algebraic description9 2 canonical extensions of product toA (Arens ’51)
X; Y2A , f2A , a; b2A
hX2Y; fi = hX; Y2fi
hY2f; ai = hY; f2ai
hf2a; bi = hf; a bi
. . . and the other way around:
hX3Y; fi = hY; f3Xi
hf3X; ai = hX; a3fi
ha3f; bi = hf; b ai
Topological centre basics Topological centre problems Topological centres as a tool
Arens products: Algebraic description
A Banach algebra; as Banach space:A,!A X; Y2A , f2A , a; b2A
hX2Y; fi = hX; Y2fi
hY2f; ai = hY; f2ai
hf2a; bi = hf; a bi
. . . and the other way around:
hX3Y; fi = hY; f3Xi
hf3X; ai = hX; a3fi
ha3f; bi = hf; b ai
Topological centre basics Topological centre problems Topological centres as a tool
Arens products: Algebraic description
A Banach algebra; as Banach space:A,!A
9 2 canonical extensions of product toA (Arens ’51)hX2Y; fi = hX; Y2fi
hY2f; ai = hY; f2ai
hf2a; bi = hf; a bi
. . . and the other way around:
hX3Y; fi = hY; f3Xi
hf3X; ai = hX; a3fi
ha3f; bi = hf; b ai
Topological centre basics Topological centre problems Topological centres as a tool
Arens products: Algebraic description
A Banach algebra; as Banach space:A,!A
9 2 canonical extensions of product toA (Arens ’51)
X; Y2A , f2A , a; b2AhY2f; ai = hY; f2ai
hf2a; bi = hf; a bi
. . . and the other way around:
hX3Y; fi = hY; f3Xi
hf3X; ai = hX; a3fi
ha3f; bi = hf; b ai
Topological centre basics Topological centre problems Topological centres as a tool
Arens products: Algebraic description
A Banach algebra; as Banach space:A,!A
9 2 canonical extensions of product toA (Arens ’51)
X; Y2A , f2A , a; b2A
hX2Y; fi = hX; Y2fihf2a; bi = hf; a bi
. . . and the other way around:
hX3Y; fi = hY; f3Xi
hf3X; ai = hX; a3fi
ha3f; bi = hf; b ai
Topological centre basics Topological centre problems Topological centres as a tool
Arens products: Algebraic description
A Banach algebra; as Banach space:A,!A
9 2 canonical extensions of product toA (Arens ’51)
X; Y2A , f2A , a; b2A
hX2Y; fi = hX; Y2fi
hY2f; ai = hY; f2ai. . . and the other way around:
hX3Y; fi = hY; f3Xi
hf3X; ai = hX; a3fi
ha3f; bi = hf; b ai
Topological centre basics Topological centre problems Topological centres as a tool
Arens products: Algebraic description
A Banach algebra; as Banach space:A,!A
9 2 canonical extensions of product toA (Arens ’51)
X; Y2A , f2A , a; b2A
hX2Y; fi = hX; Y2fi
hY2f; ai = hY; f2ai
hf2a; bi = hf; a bi

Voir icon more
Alternate Text