191
pages
English
Documents
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Découvre YouScribe et accède à tout notre catalogue !
Découvre YouScribe et accède à tout notre catalogue !
191
pages
English
Documents
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Topological centres for group algebras,
actions, and quantum groups
Matthias Neufang
Carleton University (Ottawa)Topological centre basics Topological centre problems Topological centres as a tool
1 Topological centre basics
2 Topological centre problems
3 Topological centres as a toolTopological centre basics Topological centre problems Topological centres as a tool
1 Topological centre basics
2 Topological centre problems
3 Topological centres as a toolA Banach algebra; as Banach space:A,!A
9 2 canonical extensions of product toA (Arens ’51)
X; Y2A , f2A , a; b2A
hX2Y; fi = hX; Y2fi
hY2f; ai = hY; f2ai
hf2a; bi = hf; a bi
. . . and the other way around:
hX3Y; fi = hY; f3Xi
hf3X; ai = hX; a3fi
ha3f; bi = hf; b ai
Topological centre basics Topological centre problems Topological centres as a tool
Arens products: Algebraic description9 2 canonical extensions of product toA (Arens ’51)
X; Y2A , f2A , a; b2A
hX2Y; fi = hX; Y2fi
hY2f; ai = hY; f2ai
hf2a; bi = hf; a bi
. . . and the other way around:
hX3Y; fi = hY; f3Xi
hf3X; ai = hX; a3fi
ha3f; bi = hf; b ai
Topological centre basics Topological centre problems Topological centres as a tool
Arens products: Algebraic description
A Banach algebra; as Banach space:A,!A X; Y2A , f2A , a; b2A
hX2Y; fi = hX; Y2fi
hY2f; ai = hY; f2ai
hf2a; bi = hf; a bi
. . . and the other way around:
hX3Y; fi = hY; f3Xi
hf3X; ai = hX; a3fi
ha3f; bi = hf; b ai
Topological centre basics Topological centre problems Topological centres as a tool
Arens products: Algebraic description
A Banach algebra; as Banach space:A,!A
9 2 canonical extensions of product toA (Arens ’51)hX2Y; fi = hX; Y2fi
hY2f; ai = hY; f2ai
hf2a; bi = hf; a bi
. . . and the other way around:
hX3Y; fi = hY; f3Xi
hf3X; ai = hX; a3fi
ha3f; bi = hf; b ai
Topological centre basics Topological centre problems Topological centres as a tool
Arens products: Algebraic description
A Banach algebra; as Banach space:A,!A
9 2 canonical extensions of product toA (Arens ’51)
X; Y2A , f2A , a; b2AhY2f; ai = hY; f2ai
hf2a; bi = hf; a bi
. . . and the other way around:
hX3Y; fi = hY; f3Xi
hf3X; ai = hX; a3fi
ha3f; bi = hf; b ai
Topological centre basics Topological centre problems Topological centres as a tool
Arens products: Algebraic description
A Banach algebra; as Banach space:A,!A
9 2 canonical extensions of product toA (Arens ’51)
X; Y2A , f2A , a; b2A
hX2Y; fi = hX; Y2fihf2a; bi = hf; a bi
. . . and the other way around:
hX3Y; fi = hY; f3Xi
hf3X; ai = hX; a3fi
ha3f; bi = hf; b ai
Topological centre basics Topological centre problems Topological centres as a tool
Arens products: Algebraic description
A Banach algebra; as Banach space:A,!A
9 2 canonical extensions of product toA (Arens ’51)
X; Y2A , f2A , a; b2A
hX2Y; fi = hX; Y2fi
hY2f; ai = hY; f2ai. . . and the other way around:
hX3Y; fi = hY; f3Xi
hf3X; ai = hX; a3fi
ha3f; bi = hf; b ai
Topological centre basics Topological centre problems Topological centres as a tool
Arens products: Algebraic description
A Banach algebra; as Banach space:A,!A
9 2 canonical extensions of product toA (Arens ’51)
X; Y2A , f2A , a; b2A
hX2Y; fi = hX; Y2fi
hY2f; ai = hY; f2ai
hf2a; bi = hf; a bi