THÈSE

icon

171

pages

icon

Français

icon

Documents

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

icon

171

pages

icon

Français

icon

Documents

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

◦N d’ordre : 8503
UNIVERSITÉ PARIS XI
THÈSE
présentée pour obtenir
LE TITRE DE DOCTEUR EN SCIENCES
Spécialité Mathématique
par
Mélanie Zetlaoui
Aspects statistiques de la stabilité
en dynamique des populations :
application au modèle de Usher en foresterie.
Soutenue le 7 décembre 2006 devant la commission d’examen :
M. Avner Bar-Hen Directeur de thèse
M. Patrice Bertail Rapporteur
M Alain Franc Examinateur
Mme. Elisabeth Gassiat Présidente du jury
M. Nicolas Picard Co-directeur de thèse
M. Jérôme Saracco Rapporteur ii Remerciements
Mes premiers remerciements vont tout droit à mes directeurs de thèse.
Avner Bar-Hen m’a dirigée et soutenue tout au long de ma thèse. Ses conseils
m’ont été d’une aide précieuse dans l’aboutissement de mon travail. Nicolas
Picard, par les discussions que j’ai eues avec lui et par ses remarques tou-
jours très précises, m’a permis d’approfondir ma réflexion sur mon travail de
recherche. Sa grande disponibilité et son attention ajoute à ses qualités de
chercheur.
Je tiens à remercier également tous les membres du Jury. Merci à Patrice
Bertail et Jérôme Saracco, pour avoir accepté d’éplucher ce mémoire et pour
l’intérêt qu’ils ont porté à mon travail. Leurs remarques et les discussions
qu’elles ont amenées m’ont été particulièrement enrichissantes. Merci aussi,
pour avoir accepté d’évaluer ce travail, à Alain Franc et à Elisabeth Gassiat,
que je remercie tout particulièrement pour avoir suivi mes travaux tout au
long de ma thèse et pour son ...
Voir icon arrow

Publié par

Nombre de lectures

150

Langue

Français

Poids de l'ouvrage

1 Mo

◦N d’ordre : 8503 UNIVERSITÉ PARIS XI THÈSE présentée pour obtenir LE TITRE DE DOCTEUR EN SCIENCES Spécialité Mathématique par Mélanie Zetlaoui Aspects statistiques de la stabilité en dynamique des populations : application au modèle de Usher en foresterie. Soutenue le 7 décembre 2006 devant la commission d’examen : M. Avner Bar-Hen Directeur de thèse M. Patrice Bertail Rapporteur M Alain Franc Examinateur Mme. Elisabeth Gassiat Présidente du jury M. Nicolas Picard Co-directeur de thèse M. Jérôme Saracco Rapporteur ii Remerciements Mes premiers remerciements vont tout droit à mes directeurs de thèse. Avner Bar-Hen m’a dirigée et soutenue tout au long de ma thèse. Ses conseils m’ont été d’une aide précieuse dans l’aboutissement de mon travail. Nicolas Picard, par les discussions que j’ai eues avec lui et par ses remarques tou- jours très précises, m’a permis d’approfondir ma réflexion sur mon travail de recherche. Sa grande disponibilité et son attention ajoute à ses qualités de chercheur. Je tiens à remercier également tous les membres du Jury. Merci à Patrice Bertail et Jérôme Saracco, pour avoir accepté d’éplucher ce mémoire et pour l’intérêt qu’ils ont porté à mon travail. Leurs remarques et les discussions qu’elles ont amenées m’ont été particulièrement enrichissantes. Merci aussi, pour avoir accepté d’évaluer ce travail, à Alain Franc et à Elisabeth Gassiat, que je remercie tout particulièrement pour avoir suivi mes travaux tout au long de ma thèse et pour son soutien. Grand merci aux chercheurs du laboratoire OMIP de l’INAPG pour m’avoir accueillie, et tout particulièrement à Jean-Jacques Daudin ainsi qu’à Etienne Klein pour avoir suivi mon travail lors de mes comités de thèse et dont les remarques pertinentes m’ont été précieuses. Ce travail de thèse s’est faite en collaboration avec le CIRAD-Forêt, d’où est parti mon sujet de thèse. Merci en particulier à Sylvie Gourlet-Fleury pour m’avoir fait partager son expérience sur les questions forestières, et à ceux qui ont rendus mes séjours dans ce laboratoire agréables, en particulier Frédéric, Jean-Marc et Phillippe. Durant ma thèse, j’ai été rattachée, en tant qu’ATER, au laboratoire de Mathémathiques de Paris XIII dans un premier temps. Je tiens à remer- cier tout particulièrement Francesco Russo pour ses encouragements dans mon travail de recherche. J’ai ensuite poursuivi mon service au laboratoire de Mathématiques d’Evry-Val d’Essonne. Je remercie Monique Jeanblanc et Bernard Prum pour leur accueil, et tous ceux avec qui j’ai eu le plaisir d’enseigner. Dans la dernière année de ma thèse, j’ai côtoyé les membres de l’unité iii iv Mét@risk de l’INRA. Merci à eux pour les bons moments passés ensemble, et particulièrement à Stéphan Clémençon pour s’être intéressé à mon travail et m’avoir fait partagé son expérience de la recherche et ses connaissances. Merci aussi aux thésards d’Orsay du bâtiment 430 et particulièrement à mes amis, Cristian, Ana, Sophie, Nati, Hector, et Jean-Maxime. Jeremercieenfintousmesamis,etparticulièrementBorispoursonécoute et ses conseils rassurants, Clem pour sa bonne humeur, ma Coco que je retrouve toujours, malgré de longues séparations, comme si c’était hier, et Fred pour son affection. Ma pensée va enfin à mes parents pour leur soutien, leurs encourage- ments et leur confiance de toujours, et à ma Nono pour ce qu’elle est tout simplement. 1 Résumé Les modèles matriciels sont souvent utilisés pour prédire l’évolution en tempsdiscretd’unepopulationstructuréeparâgeoupartaille.Lemodèlede Usherestunmodèlematricielquidécritl’évolutiondesindividussuivantleur tailleetrestreintlestransitionsentrelesclassesd’état.Ilestparticulièrement adapté pour décrire la dynamique d’un peuplement forestier et sert de guide dans la gestion des forêts. Cette étude porte sur les prédictions dans l’état stationnaire du modèle. L’objectif principal est la construction d’intervalles de confiance de ces prédictions. Le premier chapitre fait un état de l’art sur le modèle de Usher et pose la problématique de la thèse. Ledeuxièmechapitreestconsacréàlaconstructiond’intervallesdeconfiance des prédictions. Pour cela la distribution asymptotique des estimateurs du maximum de vraisemblance des prédictions est obtenue grâce à la delta- méthode. Des simulations permettent de vérifier la validité des résultats asymptotiques pour différentes tailles d’échantillon. Dansletroisièmechapitre,lesintervallesdeconfianceasymptotiquessont affinés en cherchant des estimateurs robustes des paramètres du modèle. Cette recherche est guidée par deux types de contraintes du modèle por- tant sur sa structure discrète et sur la dynamique de la population. Les estimateurs des paramètres ainsi construits sont desL-estimateurs exprimés dansunmodèlestatistiquemultidimensionnel.Lecritèrederobustesseutilisé est la sensibilité des estimateurs, basé sur la notion de fonction d’influence. L’utilisation de la fonction d’influence permet de plus de déterminer le com- portement asymptotique des estimateurs et d’en déduire des intervalles de confiance. Le quatrième chapitre étend les résultats du deuxième chapitre au cas du modèle densité-dépendant, dans lequel les paramètres sont fonctions des caractéristiquescourantesdelapopulation.L’existenceetl’unicitéduvecteur de distribution stationnaire sont au préalable vérifiées. Les résultats théoriques sont appliqués un jeu de données réelles d’un peuplement forestier en Guyane Française et les implications pratiques sont discutées. MOTS-CLÉS:modèledepopulation,modèlematriciel,statistiqueasymp- totique,robustesse,fonctiond’influence,sensibilité,L-estimateurs,dynamique forestière. 2 Abstract Matrix models are often used to describe the discrete-time evolution of a age-structured or size-structured population. The Usher model is a ma- trix model describing a size-structured population that is characterised by a restriction on the transitions between the state classes. It is well adapted to describe the dynamic of a forest stand and is used to deal with forest management. This study turns on predictions in the stationary state of the model. The main object is the construction of confidence intervals of these predictions. The first chapter gives an overview on the Usher model and lines out the problematic of the thesis. The second chapter addresses the construction of asymptotic confidence intervals of predictions. Therefore, the asymptotic distribution of the maxi- mum likelihood estimator of predictions is obtained by the delta method. Simulations allow to verify the validity of asymptotic results for different sample sizes. In the third chapter, the confidence intervals are refined by searching robust estimators of model parameters. The construction of these estima- tors respects the model constraints concerning its discrete structure and the dynamic of the population. The parameters estimates are L-estimators ex- pressed in a multidimensional statistical model. The robustness criteria used is the estimator’s sensibility based on the influence function. The asymptotic behaviour of the estimators is moreover determined by using the influence function and hence confidence intervals are derived. A fourth chapter extends the results of the second chapter to the more generaldensity-dependantUshermodel,wheretheparametersdependonthe varying characteristics of the population during time. The theoretical results are applied on a real data set of a forest stand in French Guyana and the practical implications are discuss. KEY WORDS : population model, matrix model, asymptotic statistics, robustness, influence function, sensibility, L-estimators, forest dynamic. AMS-Classification : 62F10, 62E20, 62F35, 62P12. Table des matières Introduction 5 1 État de l’art 15 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.1 Définition du modèle de Usher . . . . . . . . . . . . . . . . . . 16 1.1.1 Modèle de Usher linéaire . . . . . . . . . . . . . . . . . 16 1.1.2 Modèle de Usher densité-dépendant . . . . . . . . . . . 18 1.2 Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.3 Propriétés du modèle de Usher . . . . . . . . . . . . . . . . . . 21 1.3.1 LienentrelemodèledéterministeetleschaînesdeMar- kov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.3.2 Lien entre le modèle matriciel et les équations aux dé- rivées partielles . . . . . . . . . . . . . . . . . . . . . . 23 1.3.3 Comportement asymptotique du modèle . . . . . . . . 25 1.4 Différents estimateurs . . . . . . . . . . . . . . . . . . . . . . . 28 1.4.1 Estimateurs dans le modèle de Usher linéaire . . . . . . 28 1.4.2 Estimateurs dans le modèle de Usher densité-dépendant 31 2 Loi asymptotique des estimateurs des prédictions 33 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.1 Loi asymptotique des prédictions . . . . . . . . . . . . . . . . 34 2.1.1 Estimateurs du maximum de vraisemblance . . . . . . 34 2.1.2 Comportementasymptotiquedesestimateursdumaxi- mum de vraisemblance de λ et w . . . . . . . . . . . 361 1 2.2 Simulations et application . . . . . . . . . . . . . . . . . . . . 37 2.2.1 Application . . . . . . . . . . . . . . . . . . . . . . . . 37 2.2.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . 37 2.2.3 Comparaisondelavariabilitédémographiqueetd’échan- tillonnage . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3 4 TABLE DES MATIÈRES 3 Robustesse des taux de transition 43 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.1 Etude générale de la robustesse . . . . . . . . . . . . . . . . . 45 3.1.1 Estimateurs robustes asymptotiquement efficaces . . . 46 3.1.2 Fonction d’influence . . . . . . . . . . . . . . . . . . . 47 3.1.3 L-estimateurs : cas unidimensionnel . . . . . . . . . . . 49 3.1.4 Lemmes . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.2 Robustesse dans le modèle de Usher . . . . . . . . . . . . . . . 57
Voir icon more
Alternate Text