The tiered Aubry set for autonomous Lagrangian functions M.-C. ARNAUD ? March 5, 2008 Abstract Let L : TM ? R be a Tonelli Lagrangian function (with M compact and connected and dimM ≥ 2). The tiered Aubry set (resp. Man˜e set) AT (L) (resp. N T (L)) is the union of the Aubry sets (resp. Man˜e sets) A(L + ?) (resp. N (L + ?)) for ? closed 1-form. Then : 1. the set N T (L) is closed, connected and if dimH1(M) ≥ 2, its intersection with any energy level is connected and chain transitive; 2. for L generic in the Man˜e sense, the sets AT (L) and N T (L) have no interior; 3. if the interior of AT (L) is non empty, it contains a dense subset of periodic points. Then, we give an example of an explicit Tonelli Lagrangian function satisfying 2 and an example proving that when M = T2, the closure of the tiered Aubry set and the closure of the union of the K.A.M. tori may be different. Resume Soit L : TM ? R un lagrangien de Tonelli (avec M compacte et connexe et dimM ≥ 2).
- ?universite d'avignon et des pays de vaucluse
- hamiltonian function
- dual mather
- tonelli lagrangian
- avignon
- function satisfying
- lagrangien de tonelli
- function