The Steinhaus property and Haar null sets

icon

5

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

5

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

The Steinhaus property and Haar null sets Marc-Aurele Massard ENS Lyon Contents Introduction 1 1 Preliminaries 1 1.1 Polish group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Topological spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Haar-null sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Hereditary, dense G? sets and measures 3 2.1 Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 The proof of the theorem . . . . . . . . . . . . . . . . . . . . . . 4 3 Consequences of the theorem 5 4 The Haar-null sets 5 Introduction The purpose is to find a satifactory extension in Polish Groups of the following theorem : Theorem (Steinhaus theorem). Let µ be a translation-invariant regular mea- sure defined on the Borel sets of R, and A is a Borel measurable set with µ(A) > 0, then 0 ? Int(A?A).

  • dense g?

  • exists y0

  • ?k ?

  • gh ? ?

  • closed nowhere dense

  • also let

  • b2 ?

  • y0

  • there exists


Voir icon arrow

Publié par

Langue

English

The Steinhaus property and Haar null sets
Marc-Aur`eleMassard ENS Lyon
Contents Introduction 1 1 Preliminaries1 1.1 Polishgroup .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 1.2 Topologicalspaces .. . . . . . . . . . . . . . . . . . . . . . . . .2 1.3 Haar-nullsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 2 Hereditary,denseGδsets and measures3 2.1 Preparation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 2.2 Theproof of the theorem. . . . . . . . . . . . . . . . . . . . . .4 3 Consequencesof the theorem5 4 TheHaar-null sets5
Introduction The purpose is to find a satifactory extension in Polish Groups of the following theorem : Theorem(Steinhaus theorem).Letµbe a translation-invariant regular mea-sure defined on the Borel sets ofR, andAis a Borel measurable set with µ(A)>0, then0Int(AA). We just must find on which set we would apply the result.In fact it will be on non generically left Haar-null sets.But what is a left Haar-null set ?Let’s start with (a lot of) definitions.
1 Preliminaries 1.1 Polishgroup Let’s start with some definition on Polish groups. Definition(Polish space).A topological spaceXis said to be aPolish space if it is separable and completely metrizable. Definition(Polish group).A groupGis said to be aPolish groupif it is a topological group which is also a Polish space.
1
Voir icon more
Alternate Text