The Fundamental Theorem of Algebra made effective: an elementary real algebraic proof via Sturm chains

icon

62

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

62

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

The Fundamental Theorem of Algebra made effective: an elementary real-algebraic proof via Sturm chains Michael Eisermann Institut Fourier, Universite Grenoble www-fourier.ujf-grenoble.fr/˜eiserm January 6, 2009 Carl Friedrich Gauss (1777–1855) Augustin Louis Cauchy (1789–1857) Charles-Franc¸ois Sturm (1803–1855) MAA–AMS Joint Mathematics Meetings in Washington DC AMS Session on Analytic Function Theory

  • exist z1

  • complex polynomial

  • ujf grenoble

  • real numbers

  • appealing proof

  • algebra

  • algebra made effective

  • there exist


Voir icon arrow

Publié par

Nombre de lectures

23

Langue

English

The Fundamental Theorem of Algebra made effective: an elementary real-algebraic proof via Sturm chains
Carl Friedrich Gauss (1777–1855)
Michael Eisermann
Institut Fourier, Universit ´e Grenoble www-fourier.ujf-grenoble.fr/˜eiserm
January 6, 2009
Augustin Louis Cauchy (1789–1857)
Charles-Franc¸ ois Sturm (1803–1855)
MAA–AMS Joint Mathematics Meetings in Washington DC AMS Session on Analytic Function Theory
plicreexMo=RtClend=i2],[ieroehT.1reveroFm:LetitlyheeRbeterladlforeasunbm0w+ahcitplomcoexcfetnei,0as.,1aypolynomialF=Zn+na1nZ1+a+Z11zZ(=FtahthcusCn)z(Z)z2Z)(erxetCehn1..a,,zn,...1,z2istzmoegirteratnteyylieaprngllcappyauqseitnoN.tarulaeanelemes:IstherewtsC?nahtneergnordehicheldsredhtopyhehwot?sisenwCaf?oontkeeaew
of
theorem
fundamental
The
Theorem
complex
Every
polynomial
of
degree
n
has
n
complex
roots.
tiekeffevitc
algebra
?eecthcloniousman?
veryForeoremThenZa+la=FonimopylZ+a1+1+n1Zneocxelpmochtiw0a)2Z(znz.)(ZralqNatuionsuesterehtsI:nemelenatgyerytaictrmeeoficnest0aa,,1...,an1Cthereexi1zts,2z,,...Cnzchsuatth(ZF=1)zkam?noisulcnocehnthegtentresnwCa
R[i],
i
More explicitly:
LetRbe the field of real numbers and letC=
2
Every complex polynomial of degreenhasncomplex roots.
1.
=
?
The fundamental theorem of algebra
Theorem
tiveffeceitekaewhtneC?foewnainalrogplyalpeapdeedl?sciohdrresis?towhehypothe
)zZ(N.)nrutaqualtiess:onthIs2z.,..z,nsCcuthhatF=(Zz1)(Zz21a,0astnna,...,reheCt11,tzisexwtiplexhcomciecoefamektifelcsuoi?nentheconstrengthC?sdewnaeredledhioworchesth?tisyhoptnehaeekwnwef?Caproolingppeaayllacirtemoegteyyarntmeleneeaer?evitcef
F=Zn+an1Zn1+∙ ∙ ∙+a1Z+a0
Theorem For every polynomial
More explicitly: LetRbe the field of real numbers and letC=R[i],i
21. =
Theorem Every complex polynomial of degreenhasncomplex roots.
The fundamental theorem of algebra
naC?ewewpgnifoorotypsiheenakehthohdrrede?sothwcinwestrenelds?Caisulcnocehtnehtgtiecffteeiak?mon
with complex coefficientsa0, a1, . . . , an1C
Theorem Every complex polynomial of degreenhasncomplex roots.
The fundamental theorem of algebra
Theorem For every polynomial F=Zn+an1Zn1+∙ ∙ ∙+a1Z+a0
More explicitly: LetRbe the field of real numbers and letC=R[i],i2=1.
ev?theeretsixz,1z..,2.,znCsuchthatF=Z(z)1Z(z)2(Na).znZuelqratuI:snoitsnaerehtsentaelemtgeoryyecilaemrteplaylpa
?
Theorem Every complex polynomial of degreenhasncomplex roots.
The fundamental theorem of algebra
itevffceieet?maksionncluheco
with complex coefficientsa0, a1, . . . , an1C there existz1, z2, . . . , znCsuch that
F= (Zz1)(Zz2)∙ ∙ ∙(Zzn).
More explicitly: LetRbe the field of real numbers and letC=R[i],i2=1.
Theorem For every polynomial F=Zn+an1Zn1+∙ ∙ ∙+a1Z+a0
is?sothwhepytoehweakenthof?CanwetgnetnehwnaCrtseeeds?ldhoicerrdoeemrtciatyreygtalingproallyappetseusnoiutaNqlarelanenemst:Irehe
Voir icon more
Alternate Text