4
pages
English
Documents
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Découvre YouScribe et accède à tout notre catalogue !
Découvre YouScribe et accède à tout notre catalogue !
4
pages
English
Documents
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Publié par
Langue
English
GraduateStudentSeminarmsthatMartinSummeruScofhotheseolwninotherMathematics,hnicalInstitutbFductionourier,IGrenobleGreuel.Junev16je{HoJulyare4,this2008rDurationolofItalks:mo30other)minautesDPrincipalworganizer:ofEvgennoyonSmirnisocurvvit(UnivuersitaaptuseBonn)(dierenGwynedBellamrepresenygeneralizeRepresencohomologytatioelemennwithtshoheorytoofcanonicalrationaleradCherednikwithalgebrasofatdtparticular,=sh0theItwillongivcubiceeanofoevanderviewofofaretheevrepresenstatioplanencurvtheoryk-tame.oftetheolrationalvCherednikwalgebrastationatotbiquiv=w0inandtheshoscwformalizehomatrixwekmopucgivhinofopthisontheoryIishogoev1ernedbbtheories.ycoloredcertaina"cuspidal"torepresenrtation,algebras).thatBurban,IrozshallandinIntroitduce.asLesyoathatBocategorydnarccoherenhsheaukesSimpleavdalectorcbundlesrvoandncyclesdegproenerationsctivoflineselliptictame,curvallesdegenerationsInellipticmesywild.twalker,IturndiscussouttheallproblemcofbicclassicationesofbricsimpleAscoherenmaintcsheatovtoeroseonresultcertainedegenerationsrepresenotheoryfbellipticxescurvtiales.eIndecomps),osableorkvoutector70sbundlesyonKievsmotationothhoelliptictocurvandesthewproblems.ereDoubclassiedDiagraminvia1erads957willbeytaryAtrotiytoah.eradsAnemphasisapproacminimalhdels.towillstudywcoherenwtgivshearisevAes(andonalgesingularras,procohomologyjeFinallyctivdiscusseopcurvaseswwyasdealsuggesteddiaginaw(oforks1StanislavFstabilitisthisedotoprovderivAnequotienalgebraicypgroupsNext,withactspTerioadicecompteronenoftscomplexAssifyconnectedclasscompaonenariantprogressofResolutionsantationsanescalgebraicMcKagroupwisdiscusscalledopgebraserioSdicrstifteramollCategoryitsonelemenmatscollehayvsheaeenitemadeorder.OskW(1eandgivresolutionse,avctermsharacterizationrepresenof.pcomputeerioDanilodiccorrespcompinonenDecomptsofineterms(ofsomeau-gtomorphisms-dimensionalwithtniteancumThebter(andoftxedhp.oinaskts.strongItforiscategoalsoGdiscussedcoherenwhicesh.connecteddiscussgroupsbhawvrelatedeKednite1extensionsa;withsingularitpererioodiccycliccompsingularitonen-Hilbts.andThecanresultsedareappliedquivtofortheparameterstudywillofwthehnormalizerroresolutionfMcKaadencemaximalresultstoruscase.inaarepresensimpleproalgebraicLiegroup.RSacwreathinofGautam)Cluster,algebrasandandLieGrassmanniansWofallt-moypeetheGR2dIcenwillonin(andtrothemeduanalogueceeforclusterfaralgebrasarieasyawhicconGvsymplecticallyenienOnetytoforolfullforexceptionalstudyingctiondualthesemi-edcanonicalrbasisofand-equivdiscusstatcvonjectureonofChristofWGei,willBernardwhatLeclehasrceenandtoJanardsScandhrquestions.oerarwhiczierskihofgiv=res;arcluster)algebraystructurequivtorepresencoTwordinatenaturalringofofterminalpartialtagyvGarieties.ertIhemewillDaniloalsoresolution,givbedescribainproofof-stableofythiserconjecturetationsinsuitabletheycaseGI2sho.hoBriantoJurgelewiczsucMcKaparameyfocorresptheondencevforandcurvsomeesyooftgeneusholdinggthis>Ap2orvLetKhareXosingbtationsewreathaductssmosemisimpleothal-proLetjectivbethenon-hhypducterellipticUcurvgewithofngenforusnatsomeleastsemisimple3.algebraLet.GebclassifyenitetheRautomorphismdules.groupwofcompuXe.cenLetofT,nbclaeallthetralcotangenharacterstthesebundledulesofothers).Xcommon.hereThenanTofhisBGGaOquasi-proRjectivaelargerv2