Summer School in Mathematics Institut Fourier Grenoble

icon

4

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

4

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Graduate Student Seminar Summer School in Mathematics, Institut Fourier, Grenoble June 16 { July 4, 2008 Duration of talks: 30 minutes Principal organizer: Evgeny Smirnov (Universitat Bonn) Gwyn Bellamy Representation theory of rational Cherednik algebras at t = 0 I will give an overview of the representation theory of the rational Cherednik algebras at t = 0 and show how much of this theory is governed by certain cuspidal representation, that I shall introduce. Lesya Bodnarchuk Simple vector bundles on degenerations of elliptic curves In my talk I discuss the problem of classication of simple coherent sheaves on certain degenerations of elliptic curves. Indecomposable vector bundles on smooth elliptic curves were classied in 1957 by Atiyah. An approach to study coherent sheaves on singular projective curves was suggested in works of Burban, Drozd and Greuel. In particular, it was shown that the category of coherent sheaves on a nodal cubic curve and on cycles of projective lines is tame, and all other degenerations of elliptic curves are wild. However, it turns out that all plane cubic curves are brick-tame. As a main technical tool to prove this result we use representation theory of boxes (dierential biquivers), worked out in 70s by the Kiev representation school to formalize and generalize the matrix problems. Martin Doubek Diagram cohomology via operads I will give elementary introduction to operads with emphasis on minimal models.

  • mckay correspodence

  • periodic components

  • diagram cohomology via operads

  • all constructions

  • representations along

  • product algebras

  • vector spaces

  • singularity inside

  • quiver representations

  • plane cubic curves


Voir icon arrow

Publié par

Langue

English

GraduateStudentSeminarmsthatMartinSummeruScofhotheseolwninotherMathematics,hnicalInstitutbFductionourier,IGrenobleGreuel.Junev16je{HoJulyare4,this2008rDurationolofItalks:mo30other)minautesDPrincipalworganizer:ofEvgennoyonSmirnisocurvvit(UnivuersitaaptuseBonn)(dierenGwynedBellamrepresenygeneralizeRepresencohomologytatioelemennwithtshoheorytoofcanonicalrationaleradCherednikwithalgebrasofatdtparticular,=sh0theItwillongivcubiceeanofoevanderviewofofaretheevrepresenstatioplanencurvtheoryk-tame.oftetheolrationalvCherednikwalgebrastationatotbiquiv=w0inandtheshoscwformalizehomatrixwekmopucgivhinofopthisontheoryIishogoev1ernedbbtheories.ycoloredcertaina"cuspidal"torepresenrtation,algebras).thatBurban,IrozshallandinIntroitduce.asLesyoathatBocategorydnarccoherenhsheaukesSimpleavdalectorcbundlesrvoandncyclesdegproenerationsctivoflineselliptictame,curvallesdegenerationsInellipticmesywild.twalker,IturndiscussouttheallproblemcofbicclassicationesofbricsimpleAscoherenmaintcsheatovtoeroseonresultcertainedegenerationsrepresenotheoryfbellipticxescurvtiales.eIndecomps),osableorkvoutector70sbundlesyonKievsmotationothhoelliptictocurvandesthewproblems.ereDoubclassiedDiagraminvia1erads957willbeytaryAtrotiytoah.eradsAnemphasisapproacminimalhdels.towillstudywcoherenwtgivshearisevAes(andonalgesingularras,procohomologyjeFinallyctivdiscusseopcurvaseswwyasdealsuggesteddiaginaw(oforks1StanislavFstabilitisthisedotoprovderivAnequotienalgebraicypgroupsNext,withactspTerioadicecompteronenoftscomplexAssifyconnectedclasscompaonenariantprogressofResolutionsantationsanescalgebraicMcKagroupwisdiscusscalledopgebraserioSdicrstifteramollCategoryitsonelemenmatscollehayvsheaeenitemadeorder.OskW(1eandgivresolutionse,avctermsharacterizationrepresenof.pcomputeerioDanilodiccorrespcompinonenDecomptsofineterms(ofsomeau-gtomorphisms-dimensionalwithtniteancumThebter(andoftxedhp.oinaskts.strongItforiscategoalsoGdiscussedcoherenwhicesh.connecteddiscussgroupsbhawvrelatedeKednite1extensionsa;withsingularitpererioodiccycliccompsingularitonen-Hilbts.andThecanresultsedareappliedquivtofortheparameterstudywillofwthehnormalizerroresolutionfMcKaadencemaximalresultstoruscase.inaarepresensimpleproalgebraicLiegroup.RSacwreathinofGautam)Cluster,algebrasandandLieGrassmanniansWofallt-moypeetheGR2dIcenwillonin(andtrothemeduanalogueceeforclusterfaralgebrasarieasyawhicconGvsymplecticallyenienOnetytoforolfullforexceptionalstudyingctiondualthesemi-edcanonicalrbasisofand-equivdiscusstatcvonjectureonofChristofWGei,willBernardwhatLeclehasrceenandtoJanardsScandhrquestions.oerarwhiczierskihofgiv=res;arcluster)algebraystructurequivtorepresencoTwordinatenaturalringofofterminalpartialtagyvGarieties.ertIhemewillDaniloalsoresolution,givbedescribainproofof-stableofythiserconjecturetationsinsuitabletheycaseGI2sho.hoBriantoJurgelewiczsucMcKaparameyfocorresptheondencevforandcurvsomeesyooftgeneusholdinggthis>Ap2orvLetKhareXosingbtationsewreathaductssmosemisimpleothal-proLetjectivbethenon-hhypducterellipticUcurvgewithofngenforusnatsomeleastsemisimple3.algebraLet.GebclassifyenitetheRautomorphismdules.groupwofcompuXe.cenLetofT,nbclaeallthetralcotangenharacterstthesebundledulesofothers).Xcommon.hereThenanTofhisBGGaOquasi-proRjectivaelargerv2

Voir icon more
Alternate Text