Stability of trajectories for N particles dynamics with singular potential

icon

19

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

19

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Stability of trajectories for N -particles dynamics with singular potential. J. Barre1, M. Hauray2, P. E. Jabin1,3, Abstract We study the stability in finite times of the trajectories of interacting particles. Our aim is to show that in average and uniformly in the number of particles, two trajectories whose initial positions in phase space are close, remain close enough at later times. For potential less singular than the classical electrostatic kernel, we are able to prove such a result, for initial positions/velocities distributed according to the Gibbs equilibrium of the system. 1 Introduction The stability of solutions to a differential system of the type dZ dt = F (Z(t)), (1.1) is an obvious and important question. For times of order 1 and if F is regular enough (for instance uniformly Lipschitz), the answer is given quite simply by Gronwall lemma. For two solutions Z and Z? to (1.1), one has |Z(t)? Z?(t)| ≤ |Z(0)? Z?(0)| exp(t ??F?L∞). (1.2) This inequality forms the basis of the classical Cauchy-Lipschitz theory for the well posedness of (1.1).

  • lebesgue measure

  • course implies

  • all initial

  • well posedness

  • initial condition

  • simplicity all

  • t3 ?

  • general imply

  • positions evolving through


Voir icon arrow

Publié par

Nombre de lectures

12

Langue

English

Stability of trajectories for N -particles dynamics with singular potential.
J.Barr´e 1 , jbarre@unice.fr M. Hauray 2 , hauray@cmi.univ-mrs.fr 3 P. E. Jabin 1 , , jabin@unice.fr
Abstract We study the stability in finite times of the trajectories of interacting particles. Our aim is to show that in average and uniformly in the number of particles , two trajectories whose initial positions in phase space are close, remain close enough at later times. For potential less singular than the classical electrostatic kernel, we are able to prove such a result, for initial positions/velocities distributed according to the Gibbs equilibrium of the system.
1 Introduction The stability of solutions to a differential system of the type dZ dt = F ( Z ( t )) , (1.1) is an obvious and important question. For times of order 1 and if F is regular enough (for instance uniformly Lipschitz), the answer is given quite simply by Gronwall lemma. For two solutions Z and Z δ to (1.1), one has | Z ( t ) Z δ ( t ) | ≤ | Z (0) Z δ (0) | exp( t kr F k L ) . (1.2) This inequality forms the basis of the classical Cauchy-Lipschitz theory for the well posedness of (1.1). It does not depend on the dimension of the system (the norm chosen is then of course crucial). This is hence very convenient for the study of systems of interacting particles, which is our purpose here. Consider the system of equations ˙ X iiNN == EV NN ( X iN ) = 1 N P j K ( X iN X jN )(1.3) i ˙ V where for simplicity all positions X iN belong to the torus T 3 and all velocities V iN belong to R 3 . This system is obviously a particular case of (1.1) with Z = Z N = ( X 1 N , . . . , X NN , V 1 N , . . . , V NN ). The equivalent of (1.2) reads in this case k Z N ( t ) Z N,δ ( t ) k 1 ≤ k Z N (0) Z N,δ (0) k 1 exp( t (1 + kr K k L )) , (1.4) 1 LaboratoireJ.A.Dieudonne´,UMRCNRS6621,Universit´edeNice-SophiaAntipolis,ParcValrose,06108NiceFrance. 2 CentredeMath´ematiquesetInformatique(CMI),Universite´deProvence,TechnopˆoleChˆateau-Gombert,39,rueF. Joliot Curie, 13453 Marseille Cedex. 3 TOSCAproject-team,INRIASophiaAntipolisMe´diterran´ee,2004routedesLucioles,B.P.93,06902SophiaAn-tipolis Cedex, France.
1
Voir icon more
Alternate Text