Spinc Structures on Manifolds and Geometric Applications

icon

20

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

20

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Spinc Structures on Manifolds and Geometric Applications Roger NAKAD April 10, 2012 Max Planck Institute for Mathematics Vivatsgasse 7, 53111 Bonn Germany E-mail: Abstract In this mini-course, we make use of Spinc geometry to study special hyper- surfaces. For this, we begin by selecting basic facts about Spinc structures and the Dirac operator on Riemannian manifolds and their hypersurfaces. We end by giving a Lawson type correspondence for constant mean curvature surfaces in some 3-dimensional Thurston geometries. Contents 1 Introduction and motivations 2 2 Algebraic facts 3 3 Spinc structures and the Dirac operator 5 4 Examples and remarks 8 5 The Schrodinger-Lichnerowicz formula 10 6 Hypersurfaces of Spinc manifolds 12 7 Geometric applications 14 1

  • e1 ·

  • riemannian manifold

  • curvature equal

  • dimensional manifold

  • mean curvature

  • compact riemannian

  • manifolds carrying real

  • constant mean


Voir icon arrow

Publié par

Nombre de lectures

17

Langue

English

SpincStructuresonManifoldsandGeometricApplicationsRogerNAKADApril10,2012MaxPlanckInstituteforMathematicsVivatsgasse7,53111BonnGermanyE-mail:nakad@mpim-bonn.mpg.deAbstractInthismini-course,wemakeuseofSpincgeometrytostudyspecialhyper-surfaces.Forthis,webeginbyselectingbasicfactsaboutSpincstructuresandtheDiracoperatoronRiemannianmanifoldsandtheirhypersurfaces.WeendbygivingaLawsontypecorrespondenceforconstantmeancurvaturesurfacesinsome3-dimensionalThurstongeometries.Contents1Introductionandmotivations2Algebraicfacts3SpincstructuresandtheDiracoperator4Examplesandremarks5TheSchro¨dinger-Lichnerowiczformula6HypersurfacesofSpincmanifolds7Geometricapplications12358012141
1IntroductionandmotivationsHavingaSpinorSpincstructureonaRiemannianmanifold(Mn,g),wecandefineanaturalfirstorderellipticdifferentialoperatorcalledtheDiracoperator.Itactsonspinorfields:sectionsofacomplexvectorbundleΣMcalledthespinorbundle.ThegeometryandtopologyofaRiemannianSpinorSpincmanifoldandtheirsubmanifoldsarestronglyrelatedtothespectralpropertiesofthisoperator.OnacompactRiemannianSpinmanifold(Mn,g)ofpositivescalarcurvature,A.Lichnerowicz[Lich63]provedthatanyeigenvalueλoftheDiracoperatorDsatisfies1λ2>infScal,4MwhereScaldenotesthescalarcurvatureof(Mn,g).Then,thekerneloftheDiracoperatoristrivialandbytheAtiyah-Singertheorem,thetopologicalindexofMniszero.Thisyieldsatopologicalobstructionfortheexistenceofpositivescalarmetrics.Th.Friedrich[Fri80]refinedtheargumentofA.Lichnerowiczandprovedthatnλ2infScal.4(n1)MTheequalitycaseischaracterizedbytheexistenceofarealKillingspinor.Theexistenceofsuchspinorsleadstorestrictionsonthemanifold.Forexample,themanifoldisEinsteinandindimension4,ithasconstantsectionalcurvature.TheclassificationofsimplyconnectedRiemannianSpinmanifoldscarryingrealKillingspinors[Ba¨r93]gives,insomedimensions,otherexamplesthanthesphere.TheseexamplesarerelevanttophysicistsingeneralrelativitywheretheDiracoperatorplaysacentralrole.Fromanextrinsicpointofview,Th.Friedrich[Fri98]characterisedsimplycon-nectedsurfacesisometricallyimmersedinR3bytheexistenceofaspinorfieldsatisfyingtheDiracequation.Indeed,M2isasimplyconnectedSpinsurface(M2,g),R3carryingaspinorfieldϕofconstantnorm.ofmeancurvatureHsatisfying=|{z}TheDiracequationThespinorfieldϕistherestrictiontothesurfaceMofaparallelspinoronR3.AsimilarresultholdsforsurfacesinS3andH3[Mor05].Asanapplication,wehaveanelementaryproofofaLawsontypecorrespondence.H.B.Lawsonprovedacorrespon-dencebetweensurfacesofconstantmeancurvatureinR3,S3andH3:everysimplyconnectedminimalsurfaceinS3(resp.inR3)isisometrictoasimplyconnectedsur-faceinR3(resp.H3)withconstantmeancurvatureequalto1.In2001,O.Hijazi,S.MontielandX.Zhang[HMZ01a,HMZ01b]provedthatthefirstpositiveeigenvalueof2
Voir icon more
Alternate Text