Some examples of global solutions associated with large initial data for the incompressible Navier Stokes system

icon

56

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

56

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Some examples of global solutions associated with large initial data for the incompressible Navier-Stokes system Isabelle Gallagher Institut de Mathematiques de Jussieu, Universite Paris 7 Luminy, March 25, 2008 I. Gallagher (IMJ, Paris 7) Examples of large solutions to Navier-Stokes Luminy, March 25, 2008 1 / 22

  • largest adapted space

  • solution associated

  • weak solution

  • navier-stokes luminy

  • tataru space

  • divergence-free vector


Voir icon arrow

Publié par

Nombre de lectures

13

Langue

English

I.llGair7s,JaP(rMIgaehargesoflmple)ExaeivaNotsnoitulos,MnymiLuesokStr-
Isabelle Gallagher
Luminy, March 25, 2008
InstitutdeMathe´matiquesdeJussieu,Universit´eParis7
Some examples of global solutions associated with large initial data for the incompressible Navier-Stokes system
char,22581002/2
isar,PMJplamEx7)gralfoseoituloseG.laIreI(alhg0820222/
The Cauchy problem Presentation of the equations Fundamental properties Weak solutions Strong solutions Towards the largest adapted space The Koch and Tataru space
1
Outline of the talk
Situations when large data can generate a global solution Previous results Two examples
2
nstoNavier-StokeLsmuni,yaMcr2h,5
tu+u∙ ruΔu=−rpdivu= 0
(NS)
gesolutilesoflarei-rtSkonotsNovaar,M25chLuesnymi
3 withdivu=Xjujandu∙ ru=Xujju=Xj(uju). j=1j=1j=1 Remark :The pressure can be eliminated byprojection onto divergence-free vector fields:
Presentation of the equations
2
P= Id− rΔ1div.
Viscous, incompressible, homogeneous fluid, in two or three space dimensions
Velocityu= (u1u2u3)(tx), pressurep(tx)
Cauchy data :u|t=0=u0.
002,2/3833s7)ExampIMJ,Parillgaeh(r.IaG
33raP,)7simaxEselplaofesrgutolnsioI.Gallagher(IMJ
P= Id− rΔ1div.
tu+u∙ ruΔu=−rpdivu= 0
(NS)
3 withdivu=Xjujandu∙ ru=Xujju=Xj(uju). j=1j=1j=1 Remark :The pressure can be eliminated byprojection onto divergence-free vector fields:
Cauchy data :u|t=0=u0.
Velocityu= (u1u2u3)(tx), pressurep(tx)
Viscous, incompressible, homogeneous fluid, in two or three space dimensions
22
Presentation of the equations
083/02,52hcraM,ynimusLketo-ServiNato
I.aP,JMI(rehgallaGflsolempxa)Es7ritsNoitnoosulraegLumiokesr-Stavie33
3 withdivu=Xjujandu∙ ru=Xujju=Xj(uju). j=1j=1j=1 Remark :The pressure can be eliminated byprojection onto divergence-free vector fields:
Presentation of the equations
Velocityu= (u1u2u3)(tx), pressurep(tx)
Cauchy data :u|t=0=u0.
2/2
P= Id− rΔ1div.
Viscous, incompressible, homogeneous fluid, in two or three space dimensions
(NS)
tu+u∙ ruΔu=−rpdivu= 0
archny,M008325,2
Voir icon more
Alternate Text