Small values of the Euler function and the Riemann hypothesis

icon

12

pages

icon

English

icon

Documents

2012

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

12

pages

icon

English

icon

Documents

2012

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Small values of the Euler function and the Riemann hypothesis Jean-Louis Nicolas ? 2 février 2012 À André Schinzel pour son 75ème anniversaire, en très amical hommage. Abstract Let ? be Euler's function, ? be Euler's constant and Nk be the product of the first k primes. In this article, we consider the function c(n) = (n/?(n)?e? log logn) √ log n. Under Riemann's hypothesis, it is proved that c(Nk) is bounded and explicit bounds are given while, if Riemann's hypothesis fails, c(Nk) is not bounded above or below. Keywords : Euler's function, Riemann hypothesis, Explicit formula. 2010 Mathematics Subject Classification : 11N37, 11M26, 11N56. 1 Introduction Let ? be the Euler function. In 1903, it was proved by E. Landau (cf. [5, 59] and [4, Theorem 328]) that lim sup n?∞ n ?(n) log log n = e? = 1.7810724179 . . . where ? = 0.5772156649 . . . is Euler's constant. In 1962, J. B. Rosser and L. Schoenfeld proved (cf. [9, Theorem 15]) (1.1) n ?(n) 6 e? log log n+ 2.51 log log n for n > 3 and asked if there exists an infinite number of n such that n/?(n) > e? log log n.

  • let ?

  • function satisfying

  • lower bounds

  • euler's function

  • riemann hypothesis

  • chebichev functions

  • hypothesis fails


Voir icon arrow

Publié par

Publié le

01 février 2012

Langue

English

Small values of the Euler function and the Riemann hypothesis Jean-Louis Nicolas 2 février 2012
À André Schinzel pour son 75ème anniversaire, en très amical hommage.
Abstract Let ϕ be Euler’s function, γ be Euler’s constant and N k be the product of the first k primes. In this article, we consider the function c ( n ) = ( n/ϕ ( n ) e γ log log n ) log n . Under Riemann’s hypothesis, it is proved that c ( N k ) is bounded and explicit bounds are given while, if Riemann’s hypothesis fails, c ( N k ) is not bounded above or below. Keywords : Euler’s function, Riemann hypothesis, Explicit formula. 2010 Mathematics Subject Classification : 11N37, 11M26, 11N56.
1 Introduction Let ϕ be the Euler function. In 1903, it was proved by E. Landau (cf. [5, §59] and [4, Theorem 328]) that li n m s up ϕ ( n ) lo n g log n = e γ = 1 . 7810724179 . . . where γ = 0 . 5772156649 . . . is Euler’s constant. In 1962, J. B. Rosser and L. Schoenfeld proved (cf. [9, Theorem 15]) (1.1) ϕ ( nn ) 6 e γ log log n +log2 . l5o1g n for n > 3 and asked if there exists an infinite number of n such that n/ϕ ( n ) > e γ log log n . In [6], (cf. also [7]), I answer this question in the affirmative. Soon after, A. Schinzel told me that he had worked unsuccess-fully on this question, which made me very proud to have solved it. Research partially supported by CNRS, Institut Camille Jordan, UMR 5208. 1
Voir icon more
Alternate Text