Set theoretic Yang Baxter operators and their deformations

icon

126

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

126

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Set-theoretic Yang-Baxter operators and their deformations Michael Eisermann Institut Fourier, Universite Grenoble www-fourier.ujf-grenoble.fr/˜eiserm January 5, 2009 AMS–MAA Joint Mathematics Meetings in Washington DC Special Session on Algebraic Structures in Knot Theory

  • knot theory

  • ujf grenoble

  • obvious relations

  • representations artin's braid

  • yang

  • www-fourier

  • mathematics meetings

  • artin's braid

  • standard generators


Voir icon arrow

Publié par

Nombre de lectures

22

Langue

English

Set-theoretic Yang-Baxter operators and their deformations
Michael Eisermann
Institut Fourier, Universit ´e Grenoble www-fourier.ujf-grenoble.fr/˜eiserm
January 5, 2009
AMS–MAA Joint Mathematics Meetings in Washington DC Special Session on Algebraic Structures in Knot Theory
Overview
1
2
3
4
Braid groups and Yang-Baxter representations
Yang-Baxter deformations
Yang-Baxter cohomology of racks
Conclusion and open questions
Overview
1
2
3
4
Braid groups and Yang-Baxter representations Artin’s braid group Yang-Baxter representations Set-theoretic operators
Yang-Baxter deformations
Yang-Baxter cohomology of racks
Conclusion and open questions
Artin’s braid group (1925)
Braids form a group:
Artin’s braid group (1925)
Braids form a group:
Standard generators:
si
=
Artin’s braid group (1925)
Braids form a group:
Standard generators:
Obvious relations:
si
=
=
,
=
Artin’s braid group (1925)
Braids form a group:
Standard generators:
Obvious relations:
si=
=
,
=
Theorem (Artin 1925) The groupBnof braids onnstrands is presented by Bn=s1, . . . , sn1sisjsi=sjsisjif|ij|=12. sisj=sisjif|ij| ≥
Yang-Baxter representations
Each automorphism
ci
=
cAut(EE)acts onEn
as
Yang-Baxter representations
Each automorphism
ci
=
cAut(EE)acts onEn
as
The braid relation now becomes the Yang-Baxter equation:
=
(cid)(idc)(idc) = (idc)(cid)(idc)
Yang-Baxter representations
Each automorphismcAut(EE)acts onEn
ci=
as
The braid relation now becomes the Yang-Baxter equation:
=
(cid)(idc)(idc) = (idc)(cid)(idc)
Corollary (of Artin’s theorem)
Every Yang-Baxter operatorcinduces a braid group representation ρcn:BnAut(En)given bysi7→ci.
Voir icon more
Alternate Text