Second order variational heuristics for the Monge problem on compact manifolds

icon

15

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

15

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Second order variational heuristics for the Monge problem on compact manifolds? Ph. Delanoe† Abstract We consider Monge's optimal transport problem posed on compact manifolds (possibly with boundary) for a lower semi-continuous cost function c. When all data are smooth and the given measures, positive, we restrict the total cost C to diffeomorphisms. If a diffeomorphism is stationary for C, we know that it admits a potential function. If it realizes a local minimum of C, we prove that the c-Hessian of its potential function must be non-negative, positive if the cost function c is non degenerate. If c is generating non-degenerate, we reduce the existence of a local minimizer of C to that of an elliptic solution of the Monge–Ampere equation expressing the measure transport; more- over, the local minimizer is unique. It is global, thus solving Monge's problem, provided c is superdifferentiable with respect to one of its arguments. Introduction The solution of Monge's problem [16] in optimal transportation theory, with a general cost function, has been applied to many questions in various do- mains tentatively listed in the survey paper [11], including in cosmology [4]. The book [20] offers a modern account on the theory (see also [5, 10, 11]). In case data are smooth, manifolds compact, measures positive, maps one-to-one and the solution of Monge's problem unique, the question of the smoothness of that solution was addressed in the landmark paper [13].

  • called brenier–mccann

  • compact manifold

  • has no

  • find ? ?

  • open manifolds

  • no local

  • solution map

  • p0 ?


Voir icon arrow

Publié par

Nombre de lectures

7

Langue

English

SecondordervariationalheuristicsfortheMongeproblemoncompactmanifoldsPh.Delanoe¨AbstractWeconsiderMonge’soptimaltransportproblemposedoncompactmanifolds(possiblywithboundary)foralowersemi-continuouscostfunctionc.Whenalldataaresmoothandthegivenmeasures,positive,werestrictthetotalcostCtodiffeomorphisms.IfadiffeomorphismisstationaryforC,weknowthatitadmitsapotentialfunction.IfitrealizesalocalminimumofC,weprovethatthec-Hessianofitspotentialfunctionmustbenon-negative,positiveifthecostfunctioncisnondegenerate.Ifcisgeneratingnon-degenerate,wereducetheexistenceofalocalminimizerofCtothatofanellipticsolutionoftheMonge–Ampe`reequationexpressingthemeasuretransport;more-over,thelocalminimizerisunique.Itisglobal,thussolvingMonge’sproblem,providedcissuperdifferentiablewithrespecttooneofitsarguments.IntroductionThesolutionofMonge’sproblem[16]inoptimaltransportationtheory,withageneralcostfunction,hasbeenappliedtomanyquestionsinvariousdo-mainstentativelylistedinthesurveypaper[11],includingincosmology[4].Thebook[20]offersamodernaccountonthetheory(seealso[5,10,11]).Incasedataaresmooth,manifoldscompact,measurespositive,mapsone-to-oneandthesolutionofMonge’sproblemunique,thequestionofthesmoothnessofthatsolutionwasaddressedinthelandmarkpaper[13].Inthatcase,restrictingMonge’sproblemtodiffeomorphismsbecomesanaturalansatz.Doingso,theuseofdifferentialgeometryandthecalculusofvariationsenablesonetobypassthegeneraloptimaltransportationapproachandfigureoutdirectlysomebasicfeaturesofthesolutionmap.Suchavariationalheuristicsgoesbackto[1]andwaselaboratedstepwisein[9,19,4,18,7](seealso[4]).Inthepresentnote,wetakeanewstepinthat2000MSC:53A45,58D05,58E99;Key-words:Mongeproblem,minimizingdiffeo-morphism,c-potential,secondordervariation,c-Hessianpositivity,c-convexitySupportedbytheCNRS(INSMI)atUMR6621,UNS
Voir icon more
Alternate Text