Renata Grimaldi Stefano

icon

58

pages

icon

English

icon

Documents

2009

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

58

pages

icon

English

icon

Documents

2009

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Semianalyticity of isoperimetric profiles Renata Grimaldi, Stefano Nardulli, and Pierre Pansu Introduction The problem The results Proof of Theorem 1. Results in real analytic geometry Proof of Theorem 2 Proof of Theorem 3 Pseudo- bubbles for arbitrary (not necessarily small) volumes Compactness in C2,?- topology Semianalyticity of isoperimetric profiles Renata Grimaldi, Stefano Nardulli, and Pierre Pansu 10 septembre 2009

  • such currents

  • real analytic

  • round disks

  • there remains

  • riemannian manifold

  • compact real analytic

  • pi ?


Voir icon arrow

Publié par

Publié le

01 septembre 2009

Nombre de lectures

71

Langue

English

10septembre2009

RenataGrimaldi,StefanoNardulli,andPierrePansu

Semianalyticityofisoperimetricprofiles

ygolopot-α,2CnissentcapmoCsemulov)llamsylirassecenton(yrartibrarofselbbub-oduesP3meroehTfofoorP2meroehTfofoorPyrtemoegcitylanalaernistluseR.1meroehTfofoorPstluserehTmelborpehTnoitcudortnIusnaPerreiPdna,illudraNonafetS,idlamirGataneRselfiorpcirtemireposifoyticitylanaimeS
Inthistalk,
M
isacompactrealanalyticRiemannianmanifold,
ifitisnototherwisespecified.Weareconcernedwiththe
regularityofthe
isoperimetricprofile
of
M
.
Itisshownthat,indimensions
<
8,isoperimetricprofilesof
compactrealanalyticRiemannianmanifoldsaresemi-analytic.

Abstract

ygolopot-α,2CnissentcapmoCsemulov)llamsylirassecenton(yrartibrarofselbbub-oduesP3meroehTfofoorP2meroehTfofoorPyrtemoegcitylanalaernistluseR.1meroehTfofoorPstluserehTmelborpehTnoitcudortnIusnaPerreiPdna,illudraNonafetS,idlamirGataneRselfiorpcirtemireposifoyticitylanaimeS
Given0
<
v
<
vol
(
M
)
,considerallintegralcurrentsin
M
with
volume
v
.Define
I
M
(
v
)
astheleastupperboundofthe
boundaryvolumesofsuchcurrents.Inthisway,onegetsa
function
I
M
:(
0
,
vol
(
M
))

R
+
calledthe
isoperimetricprofile
of
M
.Infact,foreach0
<
v
<
vol
(
M
)
,thereexistcurrentsin
M
withvolume
v
andboundaryvolume
I
M
(
v
)
.Suchminimizing
currentswillbecalled
bubbles
,forshort.

Definitionoftheisoperimetricprofilefunction

ygolopot-α,2CnissentcapmoCsemulov)llamsylirassecenton(yrartibrarofselbbub-oduesP3meroehTfofoorP2meroehTfofoorPyrtemoegcitylanalaernistluseR.1meroehTfofoorPstluserehTmelborpehTnoitcudortnIusnaPerreiPdna,illudraNonafetS,idlamirGataneRselfiorpcirtemireposifoyticitylanaimeS
S√
4
π
v
for0
<
v

4
π,
I
M
(
v
)=
4
π
for4
π

v

4
π
(
π

1
)
,
p4
π
(
4
π
2

v
)
for4
π
(
π

1
)

v
<
4
π
2
.

Hereisatypicalexample.Let
S
denotethecircleoflength2
π
.
Let
M
=
S
×
S
.Thentheisoperimetricprofileof
M
iseasily
computedtobe

ygolopot-α,2CnissentcapmoCsemulov)llamsylirassecenton(yrartibrarofselbbub-oduesP3meroehTfofoorP2meroehTfofoorPyrtemoegcitylanalaernistluseR.1meroehTfofoorPstluserehTmelborpehTnoitcudortnIusnaPerreiPdna,illudraNonafetS,idlamirGataneRselfiorpcirtemireposifoyticitylanaime
Thisisprovenasfollows.In2dimensions,theboundariesof
thesebubblesaresmooth,theyhaveconstantgeodesic
curvature,thereforetheylifttodisjointunionsofcirclesof
equalradiiorlinesin
R
2
=
M
˜
.Itfollowsthatbubblesareeither
rounddisksorannuliboundedbyparallelgeodesics,or
complementsofsuch.Thereremainstominimizeboundary
lengthamongthesethreefamilies.

Sketchofproof

ygolopot-α,2CnissentcapmoCsemulov)llamsylirassecenton(yrartibrarofselbbub-oduesP3meroehTfofoorP2meroehTfofoorPyrtemoegcitylanalaernistluseR.1meroehTfofoorPstluserehTmelborpehTnoitcudortnIusnaPerreiPdna,illudraNonafetS,idlamirGataneRselfiorpcirtemireposifoyticitylanaimeS
Theanswerisyesmodulosomesupplementaryassumption.
Thishasbeenprovenin[Pan98]indimension2.

Forgeneralrealanalyticmanifolds,isittruethatbubblesfall
intofinitelymanyanalyticfamilies,andthattheprofileis
piecewiseanalytic?

Question

Firstquestion

ygolopot-α,2CnissentcapmoCsemulov)llamsylirassecenton(yrartibrarofselbbub-oduesP3meroehTfofoorP2meroehTfofoorPyrtemoegcitylanalaernistluseR.1meroehTfofoorPstluserehTmelborpehTnoitcudortnIusnaPerreiPdna,illudraNonafetS,idlamirGataneRselfiorpcirtemireposifoyticitylanaimeS
LetMbeacompactrealanalyticRiemannianmanifold.There
exists
>
0
suchthatI
M
isrealanalyticon
(
0
,
)
.

Theorem(Grimaldi-N.-Pansu,2009)

First,inaneighborhoodofzero.

ygolopot-α,2CnissentcapmoCsemulov)llamsylirassecenton(yrartibrarofselbbub-oduesP3meroehTfofoorP2meroehTfofoorPyrtemoegcitylanalaernistluseR.1meroehTfofoorPstluserehTmelborpehTnoitcudortnIusnaPerreiPdna,illudraNonafetS,idlamirGataneRselfiorpcirtemireposifoyticitylanaimeS
ygTheisoperimetricprofileofEuclideanspace
R
n
is
I
R
n
(
v
)=
n
(
ω
n
)
1
/
n
v
(
n

1
)
/
n
,where
ω
n
isthevolumeoftheunit
ballin
R
n
.Inacurvedmanifold,
I
M
(
v
)

n
(
ω
n
)
1
/
n
v
(
n

1
)
/
n
as
v
tendsto0.

olopot-α,2CnissentcapmoCsemulov)llamsylirassecenton(yrartibrarofselbbub-oduesP3meroehTfofoorP2meroehTfofoorPyrtemoegcitylanalaernistluseR.1meroehTfofoorPstluserehTmelborpehTnoitcudortnIusnaPerreiPdna,illudraNonafetS,idlamirGataneRselfiorpcirtemireposifoyticitylanaimeS
..nc=n1−n]∙∙∙+)nB(loVnr[∙∙∙+)1−nS(aerA1−n)a(Ilimsup
n

1

c
n
.
0→ana

rSketchoftheproof

0Proposition

→ehtebIteL

rM
.Then

pDemonstration:
Fixapoint
p
∈M
.

ulimsup
I
(
a
)

limsup
Area
(

B
(
p
,
r
(
a
)))
a

0
a
nn

1
a

0
Vol
(
B
(
p
,
r
(
a
)))
nn

1

swith
r
(
a
)
suchthat
Vol
(
B
(
p
,
r
(
a
)))=
a
.Changingvariablesin
thelimits,wefind

mAaer

iln1−n))r,p(B(loV))r,p(B∂(aerA0→rpusmil=n1−n)))a(r,p(B(loV)))a(r,p(B∂(0→apusmilfoelfiorpcirtemireposiygolopot-α,2CnissentcapmoCsemulov)llamsylirassecenton(yrartibrarofselbbub-oduesP3meroehTfofoorP2meroehTfofoorPyrtemoegcitylanalaernistluseR.1meroehTfofoorPstluserehTmelborpehTnoitcudortnIusnaPerreiPdna,illudraNonafetS,idlamirGataneRselfiorpcirtemireposifoyticitylanaimeS
itylanaimeSWehaveonlyapartialanswer.

ForacompactanalyticRiemanniann-manifold,isI
M
(
v
)
an
analyticfunctionofv
1
/
n
on
[
0
,
)
?

Question

Secondquestion

ygolopot-α,2CnissentcapmoCsemulov)llamsylirassecenton(yrartibrarofselbbub-oduesP3meroehTfofoorP2meroehTfofoorPyrtemoegcitylanalaernistluseR.1meroehTfofoorPstluserehTmelborpehTnoitcudortnIusnaPerreiPdna,illudraNonafetS,idlamirGataneRselfiorpcirtemireposifoytic

Voir icon more
Alternate Text