REAL INTERPOLATION OF SOBOLEV SPACES NADINE BADR Abstract. We prove that W 1p is a real interpolation space between W 1 p1 and W 1 p2 for p > q0 and 1 ≤ p1 < p < p2 ≤ ∞ on some classes of manifolds and general metric spaces, where q0 depends on our hypotheses. Contents 1. Introduction 1 2. Preliminaries 3 2.1. The doubling property 3 2.2. The K-method of real interpolation 4 3. Non-homogeneous Sobolev spaces on Riemannian manifolds 5 3.1. Non-homogeneous Sobolev spaces 5 3.2. Estimation of the K-functional of interpolation 5 4. Interpolation Theorems 13 5. Homogeneous Sobolev spaces on Riemannian manifolds 15 6. Sobolev spaces on compact manifolds 18 7. Metric-measure spaces 18 7.1. Upper gradients and Poincare inequality 18 7.2. Interpolation of the Sobolev spaces H1p 19 8. Applications 21 8.1. Carnot-Caratheodory spaces 21 8.2. Weighted Sobolev spaces 22 8.3. Lie Groups 22 9. Appendix 23 References 24 1. Introduction Do the Sobolev spaces W 1p form a real interpolation scale for 1 < p <∞? The aim of the present work is to provide a positive answer for Sobolev spaces on some metric spaces. Let us state here our main theorems for non-homogeneous Sobolev spaces (resp. homogeneous Sobolev spaces) on Riemannian manifolds.
- measure space
- riemannian manifold
- interpolation
- interpolation space between
- can take
- p2 ≤
- general spaces
- calderon- zygmund decomposition