QUASI-CONFORMAL GEOMETRY AND MOSTOW RIGIDITY by Marc BOURDON Abstract. — We present the basic tools and results of quasi-conformal geometry of Euclidean spheres. We use them to prove the Mostow rigid- ity theorem and the Sullivan-Tukia theorem, for the real hyperbolic spaces. Resume (Geometrie quasi-conforme et rigidite de Mostow) On presente les resultats et outils standards de la geometrie quasi- conforme des spheres euclidiennes. On les utilise ensuite pour demontrer les theoremes de rigidite de Mostow et de Sullivan-Tukia, dans le cas des espaces hyperboliques reels. Contents 1. Quasi-conformal geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2. Quasi-isometries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3. Mostow rigidity (proof). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4. Sullivan-Tukia's theorem (proof) . . . . . . . . . . . . . . . . . . . . 10 References.
- ?x? y??·
- mostow
- theoremes de rigidite de mostow et de sullivan-tukia
- then there
- mobius homeomorphisms
- curve ? joining
- let b1