Qualitative Analysis of a Mean Field Model of Tumor Immune System Competition

icon

24

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

24

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Qualitative Analysis of a Mean Field Model of Tumor-Immune System Competition Elena De Angelis(1) and Pierre-Emmanuel Jabin(2) (1)Dipartimento di Matematica, Politecnico di Torino Corso Duca degli Abruzzi 24, 10129 Torino, Italy email: (2)Ecole Normale Superieure Departement de Mathematiques et Applications, CNRS UMR 8553 45 rue d'Ulm, 75230 Paris Cedex 05, France email: Abstract This paper deals with the qualitative analysis of a model related to the immune response to the evolution of the progression of endothe- lial cells which have lost their differentiation and start their evolution toward methastatic states. We prove the existence of solutions to the Cauchy problem related to the model. The asymptotic behavior in time of our solutions is also investigated. Keywords: Vlasov kinetic theory, Cauchy problem, cell population, tumor-immune com- petition 1 Introduction This paper deals with the qualitative analysis of the initial value problem for a mathematical model designed to describe the interaction and the com- petition between immune and cancer cells mediated by environmental cells which provide the feeding for the growth related to the mitosis process. The mathematical model was proposed in [1] derived on the basis of math- ematical methods typical for nonequilibrium statistical mechanics and gen- eralized kinetic theory.

  • also occur

  • cauchy problem

  • tumor cells

  • when cells

  • then no weak

  • between immune

  • immune cells

  • interaction between

  • cells mediated


Voir icon arrow

Publié par

Nombre de lectures

7

Langue

English

QualitativeAnalysisofaMeanFieldModelofTumor-ImmuneSystemCompetitionElenaDeAngelis(1)andPierre-EmmanuelJabin(2)(1)DipartimentodiMatematica,PolitecnicodiTorinoCorsoDucadegliAbruzzi24,10129Torino,Italyemail:deangeli@calvino.polito.it(2)´EcoleNormaleSupe´rieureDe´partementdeMathe´matiquesetApplications,CNRSUMR855345rued’Ulm,75230ParisCedex05,Franceemail:jabin@dma.ens.frAbstractThispaperdealswiththequalitativeanalysisofamodelrelatedtotheimmuneresponsetotheevolutionoftheprogressionofendothe-lialcellswhichhavelosttheirdifferentiationandstarttheirevolutiontowardmethastaticstates.WeprovetheexistenceofsolutionstotheCauchyproblemrelatedtothemodel.Theasymptoticbehaviorintimeofoursolutionsisalsoinvestigated.Keywords:Vlasovkinetictheory,Cauchyproblem,cellpopulation,tumor-immunecom-petition1IntroductionThispaperdealswiththequalitativeanalysisoftheinitialvalueproblemforamathematicalmodeldesignedtodescribetheinteractionandthecom-petitionbetweenimmuneandcancercellsmediatedbyenvironmentalcellswhichprovidethefeedingforthegrowthrelatedtothemitosisprocess.Themathematicalmodelwasproposedin[1]derivedonthebasisofmath-ematicalmethodstypicalfornonequilibriumstatisticalmechanicsandgen-eralizedkinetictheory.Thegeneralidea,asdocumentedin[2],consistsinderivinganevolutionequationforthefirstdistributionfunctionoverthe1
variabledescribingthemicroscopicinternalstateoftheindividuals.Gen-erally,thisvariablemayincludepositionandvelocity,butitcanalsorefertosomeadditionalspecificmicroscopicstates.Interactionsbetweenpairshavetobemodelledtakingintoaccountnotonlymechanicalrulesbutalsomodificationsofthenon-mechanicalphysical(internal)state.Thismodelreferstotheearlystageoftumordevelopmentwhentumorcellsarenotyetaggregatedintoasolidform.Thissituationalsooccurwhencellsareresiduallydispersedintheenvironmentafterremovalofsolidform.Developmentsofmodelingmethodsforlargedispersedsystemsbymethodsofthemathematicalkinetictheoryisdocumentedinthecollectionofsur-veyseditedin[3]and[4].SpecificallythemathematicalmodeldealtwithinthispaperisbasedonameanfielddescriptioncorrespondingtotheVlasovequation.Thisgeneralizationisappliedtovariousfieldsofappliedsciences,anexampleisthemodelingofdispersedbubblesinafluid,see[5]and[6].Cellularphenomena,relatedtoinnerpropertiesofthecell,playarelevantroleintheevolutionofthephysicalsystemwearedealingwith,seee.g.Greller,TobinandPoste[8].Thecellularscalereferstothemain(interac-tive)activitiesofthecells:activationandproliferationoftumorcellsandcompetitionwithimmunecells.Inparticular,proliferationoftumorcells,whichareoftendegeneratedendothelialcells,happenswhenanenviron-mentalcellloosesitsdeathprogramand/orstartstoundergoingmitosiswithoutcontrol.Moreover,competitionwiththeimmunesystemstartsiftumorcellsarerecognizedbyimmunecells.Activationandinhibitionoftheimmunecellsintheircompetitionwithtumorisregulatedbycytokinesignals.Tumorcellscanbeadditionallyactivatedtowardsproliferationduetonutrientsupplyfromenvironmentalcells.Specificallythepresentpaperaimstoanalyzethemodelproposedin[1]throughaqualitativeanalysiswhosemainresultreferstoexistenceanduniquenessofthesolutiontotheinitialvalueproblemundersuitableas-sumptionsontheinitialdata.Anasymptoticanalysisisalsodevelopedtobetterunderstandtherelevanceofsomephenomenadescribedbythemodel.Particularattentionisgiventothequalitativeanalysisoftheasymptoticbe-haviorofthesolutionswhichmayeithershowtheblowupoftumorcells,ortheprogressivedestructionoftumorcellsduetotheactionofimmunecells.Indeed,thequalitativeanalysisdevelopedinthispaperpointsouttheabovebehaviorwithreferencetotheparameterswhichcharacterizethemodel.Asitwillbeshowninwhatfollowsaninterestingbiologicalinterpretationcanbegivenwithreferencetotheaboveasymptoticanalysis.Thecontentsofthispaperareproposedinfivesections:2
Voir icon more
Alternate Text