periodicity of cluster Y systems

icon

80

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

80

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Rogers dilogarithm and periodicity of cluster Y -systems F. Chapoton July 30, 2010 F. Chapoton Rogers dilogarithm and periodicity of cluster Y -systems

  • identities can

  • cluster algebras

  • chapoton rogers

  • rogers dilogarithm

  • functional equations

  • famous spence-abel


Voir icon arrow

Publié par

Langue

English

Rogers
periodicity
of
F.
dilogarithm
and cluster
Chapoton
July
30,
F. Chapoton
2010
Y-systems
Rogers dilogarithm and periodicity of clusterY-systems
Plan
1
2 3
ial
Some dilogarithm identities can be written in a spec manner. They are related to Y-systems and cluster algebras. The cluster category lurks in the background.
F. Chapoton
Rogers dilogarithm and periodicity of clusterY-systems
Dilogarithms
First, the classical dilogarithm (Leonhard Euler) x Li2(x) =nX1xn2n=Zlog(1y)ydy. 0
F. Chapoton
Rogers dilogarithm and periodicity of clusterY-systems
Dilogarithms
First, the classical dilogarithm (Leonhard Euler) x Li2(x) =Xnxn2=Z0 log(1y
n1
)dyy.
Then, the Rogers dilogarithm (Leonard James Rogers)
L(x) = Li2(x+)ol21g(x) log(1x).
see reference book by Leonard Lewin.
F. Chapoton
Rogers dilogarithm and periodicity of clusterY-systems
Dilogarithm values and identities
Values of L:
L(0) = 0
and
F. Chapoton
L(1) =ζ(2) =π2/6.
Rogers dilogarithm and periodicity of clusterY-systems
Dilogarithm values and identities
Values of L:
L(0) = 0
and
Functional equations for L:
L(1) =ζ(2) =π2/6.
L(x) + L(1x) = L(1).
F. Chapoton
Rogers dilogarithm and periodicity of clusterY-systems
Dilogarithm values and identities
Values of L:
L(0) = 0
and
Functional equations for L:
and
L(1) =ζ(2) =π2/6.
L(x) + L(1x) = L(1).
L(1/(1 +x)) + L(1/(1 +y)) + L(y/(1 +x+y)) + L(x/(1 +x+y)) + L(xy/(1 +x)(1 +y)) = 2 L(1).
F. Chapoton
Rogers dilogarithm and periodicity of clusterY-systems
Dilogarithm values and identities
Values of L:
L(0) = 0
and
Functional equations for L:
and
L(1) =ζ(2) =π2/6.
L(x) + L(1x) = L(1).
L(1/(1 +x)) + L(1/(1 +y)) + L(y/(1 +x+y)) + L(x/(1 +x+y)) + L(xy/(1 +x)(1 +y)) = 2 L(1).
FamousSpence-Abel identity with hidden cyclic symmetry of order 5.
F. Chapoton
Rogers dilogarithm and periodicity of clusterY-systems
Voir icon more
Alternate Text