37
pages
English
Documents
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Découvre YouScribe et accède à tout notre catalogue !
Découvre YouScribe et accède à tout notre catalogue !
37
pages
English
Documents
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Publié par
Langue
English
Publié par
Langue
English
†
sH (R) s> 1/4
2 2∂ u+H∂ u+u∂ u = 0, u(x,t = 0) =u (x), (t,x)∈R .t x 0x
H
Z
1 f(y) 1 1 1 ˆHf(x) = dy = vp ?u =F ( isgn()f()).
x y x
u0
∞C
su ∈ H0
3 3s > s =
2 2
12
2L H
Z Z
2 2u (x,t)dx = u (x)dx,0
R RZ Z Z Z
1 1√ √1 1
4 2 3 4 2 3| u(x,t)| dx+ u (x,t)dx = | u (x)| dx+ u (x)dx.0 03 3R R R R
5s> 4
9s >
8
1H
†
withdierenspaces,ersivwt[5,densitiesto(seeWBenjamino[2]OrsaandoOnois[22]),dataanhdoitusebwelongsndtowawilllargeryclassductionofoequationuniquenessmo,delinghthisKt,yptoetoofophenCNRS,omena,rancesomeheaofthewhicfollohws:areforcertainlywillmoretransform,ph(1.1)ysicallyologies.relevconanMoreot.theMathematicallye,abricehoswedevdataer,more(1.1)andpresenFtstlysevveralforinwhicteresting[andreferencescell-phamath?matiques,lersit?lenunivgingelo[7])propresulterties;ontheestimatesexaequationctasbalancetbationetearwwhiceenaluedtheourselvdWegree(1.3)ofHilbtheandnonlinearitusyInandertheuoussmoisothinger,prop,ertiesequationofsolutionstheistencelinearproparthonprecludesRecenanrogressyeenhopeethetoproblemacSobhievyemethoresultscthroughzva[17]directBurqxeddpandoin[13]tthisproBenjamin-Onocedure,obhartzeareitfrequencyi]n6])KatoTsobtainedmusingotothing8628t425yparis-Sud,eetofdespaces(Ginibre-Voramorethiselabreliesoratevilyconormaldisp(Bourgain)espacfores.nonlinearInasfact,ellthetheowingwwfromconserv(1.1)lafailslater.toappbhereasonss,uidreal-vLabesAnalyse,restrict&eUMR(1.2)dubS,denedGalil?e,ertersit?thearishereafter,99HerevconsiderueLetCl?troe1t,topVilletaneuseeakh-Tinzvtinetkh?lderowvthe[18]).vBy.standardinenergywithmethoBenjamin-Onodsfor(ignoringofthereforeandtheexdispversiveeAbstractpart),Plancon(1.4)etlymapyhaobtainbloaccailvinontimeCaucsolutionsyforforsmoinotholevdbata,usinge.g.sophisticatedofds:ersoyhlaTofetkwithvterfaceobtainedinandtheNicolasatanandsubsequenreacKenighKpropagationenigeimprovedaresultbequationythetaking(binthaccounStrictestimatessomehformtailoredofthedisp(seeersion26(P,onceTheorem[23]andandtherein);referencesatherein).[25]Onosednessthesolutions,otherahand,D?partemen(1.1)dehasUMRglobalduwB?teakUnivwPwithF-91405andydealsInstitut(1.1)ersitaireEquationFsolutionsOn(Molinet-Saut-ToratoirezvG?om?trieetkApplications,o7539vCNR[21]),InstitutandUnivevPen13,uniformlyaconentinJ.B.uousm(KnoF-93430c11˙H
s 1H s>
4
2s = 0 L
2L
1H (T)
1s >
4
1 +s+ ,∞ 1 1 10 s 2 2 s ,4 ∞ s ,
4 4 2C (R ;H (R ))∩W (L )∩W (L )∩Xt x x t t
+1s,p s,
2W X
2 2 2(∂ + a(x)∂ ) (∂ + ( ∂ a(x)/2 + a (x)/4)) x xx xRx = exp( a(y)dy/2)
i
s,b X
++ 10 ,
2X
1
4
1
4
s,0X
1s,1X
2
11,
2X
inauniquebtherefore(awinalyimmediatelyforofosothequationdata,eintheawheresimilarhw(1.1),aeypurelyasab[12]aexaretendststhebKdVgowithwwilltoHsmoonlythein[10],laInbutsolutions).h.expWhileb[10]esgueobwviouslythesupplaceersedeshourcedureexistentesceshouldresult,globaluniquenesstlyisvmeantotwinthetheInclassspatialofclimitsanofsmosmobothinnitesolutions;gaugeittrollingshould.berteypspoinastedAsoutwithat,needsdueintowhenthethanquasilineargaugenaralturewofwhictheinequation,ativuniquenessealwInaonenysparaprorequiresfactor.additionalerrorargumenaretsonesifofonefact,is[25],willingw-hightomenestimatestheedierenceell-pofsolutionstewtialothsolutions,lossagaugestepofwhicanhtisestimates,bdoypassedtheinvthwhile,eonenextendedapproachhhasusedthroughineing[12].normUniquenesscoissuesconservwillobservbtheeisfurtherultiplicationdiscussedonafterositivthetostatemenetsolutionofaluedresults.h,Ourtialmabi(otherwise,nsolutionresultinreadandsanaswithfollothankswserforming(avrenedgloballyvrstersionearizewilgaugelyborsteisgivw-highentaklatertheon):fTheoremon1iFreqorwanytheglobalpobtainingy(thereforewithtoonen,thistherloteitexistswhicatermsuniquecusstreongariansolutionconormalof;theremarkBenjaminTOnooneethequa-teractiontionri(1.1)ab,thewhichltiscanwnvdoeloincby.aer,wtotheexpallcomingexistencetransformation,edsvequation).improccurs.KenigertingandconormalIonescuawhere(whic[10],yinterpedwhievoacuastransformwwhicbreakthroughnoteanddecisivtaonly,toouslyeect).ultanegaugesimtheandfactortlyroughlyendenconservIndepy.hierarcwithandata,tegrable,ofcompletelyelalevtransformation:thebat(equationresulttheuniquenessnandwexistenceationananother.AsUniquenessedis[25],meHilbanttransforminnothingthismclass,bwhertoethobtainpeearectrum,ewhicthewusualreduceSobtheolevispreal-va.csucestheandonenwfactororkllwetimaginarypresenoneartheetoceonormaltegrablespspace)acisesirrelev(whichtwildealinglLebbnorms.eRatherdenepdtheinotheenexttransformationse,ction).eLetpausinoutlinethebrieyandhoawatheonlyprowofterm,willhprowhenceed.lothefrequenciesWteractioneeswwithorkderivwithesmoaothlingsolutions,thandhobtaingafprioriuencies.estimateseect,inevreplacingariousexpspacestiationwithrolobwaregularitductythe.xpCltialaWhilesscreaicalaproofceduterms,reshighlighthenclearlyahltheloonewfotoon.passWtousethevlimittand)prospacesvidetoexistence.inInasWedeypaoerformshouldasilenrendropormalizationloininy).inisoalginwequationhtionedtcoexactlye,Onreotherufinaequationrbasprowedebknoww,osedthisextendedtricekcangoTheseesHobacevkwtoneedHadealytheashi-Ozaonenwfactorafrom[8]gaugewhenanddealingiwithisnonlinearaScBurgershr?odingerlinearizesequationsvwithethinderivspacesativlosees:factorfacinghaninopregulariterator(asregularitinwolationloetateenproblemwyhrCaucdetheanwithopf-Coleconnectedoneehbes,loseoneythingmaanyofredwhicucelosesitariantothankscannotatothingmomenMeanthetheatactionhrequireswhicexpfacttialatows,elainationthe(complex)spiritofwhicTmaaohes[25]..Athes2sH
1 1,
2 2X
2 2L C (L )t
2H
1H
s > 1/4
2L
∞ 2L (L )t x
1
∞ 2L (H )xt
1
22H (T) L (T)
thesolutionisconstructedthismaasbwithysetting:extractingardasolvweneaktlimit;yoneehasatoipwerformwillaimpliesseparatehargumenaret.alwThisequation,requiresertakingofdierencesesgue-likounconditionalfetshortlywinotamedsolutions,rstanduniquenesspyielderformingSanotherwheregaugeytransform.existsAsymmetrymakleadsconservtoenmorethedicultehaterms]thanoutbgefore,ourbutsolutionsbsolutionyapproacusingsallbthebtainedaforpriorihknoxedwledgehonevhastonabhothssolutionsregularit(anresultdstatemenesponeciallyhonefoubineingandtheletlimitforofofsmoareothrthersolutionsequation,constructedsmobvefore),sevwofeThearerstableetotedcloseectsaneaItprioritoestimatewine(aprogresssuitableeavtime-spaceersionorofwhic)othingwhereeclassithewithoutintsuniquenesselsewhere.videMolinet.osednessSucequationhstillanrestimatebprobvidesoinH?ldersuitableconwheretinuenciesuitbythatofotheticalodatum,w,ofexpresseddecompinewme,eakhigheerEfhuesnctionuspacesasthstructuralanethetsonesomewhatsbusedinforisexistence.classRemarkthe1.1renormalizationLetFinallyuspmakteequations,somewheremoreothspbutecicunlesscommenftsonontheourmoreuniquenesslastatemensolutionstysandtoitssolution,re-solutionslation(onlytobthetropicuniquenessepartsemilinearoftruely[10]es:quasilinearTheoremp1.1inofOne[10]wstatesdispthattothehoouldwinmapv(whell-denedteconcouldsmobinedothtdata)toexoftendswhicuniquelyuniquenesstospace-timeayconoftinfromuousvocalwy).mapcanfromtoproell-pnotntooesthedofurtherestimatehprioripresena,anthat.([20],[19])Prowvingthethat-antheyvsmomaothfsequencewofcansolutionseisedayCaucpht,yasequenceBanacrequiresspace,takinglothefreqdierehanceeofeen(large)(Remarkspforectralwtruncationssolutionsofidentheseinitisolutionsl:theonepartthensucusesatheositionexistenceboftheloacfromalatsmorothy).solutionsv(insucObtainingael.do,notthoughouradmittedlyniquenessonet,coulditusesomeTassumptionao'sthresultsolution.attatemenlevwhicatare)similartoydealewithndthis[19],spuniquenessecobtainediacwhicdierence.includesInsolutionconitstrast,bwitself.e,prousvoineouanthatestimatequasilinearontheredierenceexamplesoflimitssolutionssmowhicsolutionshuniqueonlysolutionsusesnot,ouroneaesprioriuknrestrictionsothewledgeconsideratBurgerstheorgivgenerallyenationsolutionws,ourothretainwilltoawsconregularitergeythe.tropicItwhileshoulderalbmaeexistponeointhemtedeingoutenthatone).sucBhnjamin-Onoawhileproatcedglance,urebmavylikwaellequation,brsteoinsuccessfuloutin[21the.framewexporkhoofev[10]its:ersivatnatureanruleysucrate,pathologies.awreadingbofoftheirterestproinofestisuggestsatethatouniquenessthecouldhniquesb[10]ebimple-commenwithtedargumenastoafurthersumwofuniquenesstwwkonorm,parts(unconditional:inaornoenliLebnanearuniquenessobthejectswhic[7],hhiserifythelosmosmoothinequalitsolutionOurwithhtrubncatedexploited(onobtainthewFosednessouriernside)iinitialsdata,landgaugeallo;hrequiresdata,argumenywhicclevwillsubstitutionektedtheFinallyonenwgauge.noteaL.transformationhaswhicoh(global)isell-pdepforendBenjamenntOnoononthetorus,rstertpart,insatisyandesafteranoequationewhicanotherhandpartwhicbh,aaftererrenormatriclonizationexpbtialy32∂ u M ∂ u M ∂ u+∂ (u ) = 0, u| =ut 1 1 x 2 2 x x t=0 0
1dM u() =m ()ub(), m () =kcoth(H )i i i i
Hi
2 2∂ u+H∂ u+K∂ u +∂ (u ) = 0 K K()t x xx
||K() =K +O(e ) > 0 K0 0
s,b 2X P = H∂x
2H∂ +K ∂0 xx
b( ) ∈S(R) = 1j j∈Z
j jb|| 1 = 0 || > 11/10 (x) = 2 (2 x) S = (x) = ( )(x)j j j j j+1 j
= S S = S j j+1 j j 0 1
u = u u = S uj j j j 1
f,g
X
T f = S (g) (f),g j 1 j
j
g f gf
j2
s,q0f S (R) s ∈R 1 p,q +∞ f Bp
p S f ∈L0
js q (ε ) ε = 2 k (f)k p lj j∈N j j L
s,q0 1+1u(x,t)∈S (R ) u∈L (B ) j 1pt
js q
p2 k uk =ε ∈l .j jL (L )xt
s,q 0 n+1u(x,t)∈S (R ) u∈B (L ) j 1p t
js q
p 2 k uk =ε ∈l .j jL (L )x t
decompaley,d-PhhandlewithouiltoinLit