17
pages
English
Documents
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Découvre YouScribe en t'inscrivant gratuitement
Découvre YouScribe en t'inscrivant gratuitement
17
pages
English
Documents
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
e
On
v
uniqueness
u
for
or
semilinear
text
w
ersit
a
natural
v
cusing
e
on
equations
1
F
w
abrice
Cedex
Planc
t
hon
h
Uniqueness
01/28/2002
an
Abstract
L
W
ose
e
namely
pro
do
v
t
e
d'Analyse
that
place
uniqueness
hoice
holds
the
in
a
C
b
t
to
(
the
_
class
H
wn
s
assumption
)
L
for
(or
solutions
[13
of
uniqueness
in
u
t
=
note
u
y
p
of
for
1
suitable
the
v
URA
alues
et
of
75
s;
the
p
spaces
.
ed
This
p
includes
cedure
the
Hence
_
w
H
whether
1
are
critical
vide
case
uniqueness
for
class
n
the
=
the
4
is
;
hold
5
a
;
t
6.
u
In
t
tro
x
duction
smo
Let
,
us
Our
consider
to
the
the
equation
lo
so-
u
in
=
_
W
u
w
3
need
;
on
(1)
but
with
L
Cauc
_
h
whic
y
b
data
Lab
(
u
189,
0
e
;
Curie,
u
BP
1
P
)
to
2
c
(
of
_
in
H
olv
1
in
;
xed
L
oin
2
pro
)
yielding
in
solution.
space
a
dimension
question
n
ould
=
e
4.
suc
This
assumptions
equa-
necessary
tion
pro-
is
uniqueness,
kno
if
wn
in
to
energy
b
holds.
e
in
(lo
energy
cally)
(for
w
defo
ell-p
case)
osed
kno
in
to
the
under
energy
additional
space,
priori
yielding
of
a
yp
solu-
@
tion
2
u
1
whic
(
h
4
is
)
C
assuming
t
othness
(
u
_
see
H
]).
1
purp
).
is
This
obtain
solution
in
can
con
b
of
e
cal
extended
time
to
lutions,
a
uniqueness
global
C
one
(
in
H
the
).
defo
e
cusing
that
case
e
([12]).
not
Ho
an
w
assumption
ev
@
er
,
uniqueness
instead
holds
considering
only
1
with
(
some
H
additional
)
assumptions,
h
lik
ould
e
e
u
2
oratoire
L
Num
3
erique,
t
CNRS
(
Univ
L
6
Pierre
x
Marie
).
4
This
Jussieu
restriction
187,
can
252
b
aris
e
1
relatedsemilinear
natural
ol
c
Maxw
hoice
tro
in
examples
the
nonlinearit
con
space
text
1,
of
aley
w
denition
eak
ell-p
solutions
e
(and
b
in
deals
view
imp
of
deals
the
reader
formal
estimates
energy
App
equalit
scaling.
y),
but
w
due
e
ask
assume
h
con
and
tin
ell-p
uit
is
y
is
in
presen
time.
Ho
This
in
prop
nonlinearities.
ert
nonlinearit
y
with
alw
1,
a
]).
ys
as
comes
of
for
with
free
e
when
this
constructing
to
solutions
w
to
ecial
(1)
one
b
of
y
ould
xed
one
p
y
oin
This
t.
yielding
On
G
the
of
other
sections:
hand,
del
the
a
result
approac
holds
con
irresp
without
ectiv
the
e
case
of
Indeed,
the
o
sign
is
in
ativ
(1).
what
Moreo
b
v
Littlew
er,
ducts
w
wledge
e
,
p
w
oin
rules
t
hartz
out
the
that
e
the
2
strategy
ect
whic
equations
h
ang-Mills
follo
are
ws
yp
applies
kno
to
e
an
b
y
=
nonlinearit
the
y
of
lik
.
e
t
u
the
p
of
,
w
where
in
p
situation,
2
hnical
N
hartz)
(with
(bilinear
a
s;
lo
out
w
p
er
example)
b
for
ound
the
on
The
the
pap
p
in
o
rst
w
the
er)
(1),
in
tended
an
tle
y
to
dimension
w
n
here.
all
4.
t
This
tec
t
ev
yp
itself,
e
a
of
Theorem
result
next
extends
second
as
generic
w
er-lik
ell
third
to
oted
non
with
in
in
teger
.
p
ws,
o
assumed
w
at
ers
v
(or
o
p
and
o
[16
w
and
er-lik
Stric
e
assumed
nonlinearities),
,
at
e
the
er
exp
pro
ense
w
of
useful
lengthier
in
paralinearization
F
estimates.
v
W
reader,
e
the
are
Beso
ho
critical
w
resp
ev
to
er
Field
unable
lik
to
Y
obtain
or
sharp
ell-Klein-Gordon
results
of
for
t
n
e,
=
are
3,
wn
due
b
to
w
the
osed
failure
elo
of
s
the
1,
endp
to
oin
sp
t
structure
Stric
the
hartz
y
estimate
Hence
(non
migh
sharp
naturally
results
whether
are
strategy
p
pro
ossible,
w
giving
follo
unconditional
w
w
apply
ell-p
suc
osedness
a
"
replacing
ab
tec
o
to
v
(Stric
e
b
the
another
critical
estimates
regularit
H
y).
spaces).
Results
turns
of
to
this
e
t
ossible,
yp
(for
e
w
also
osedness
hold
MK
for
in
semilinear
energy
equations
([9]).
with
remaining
deriv
this
ativ
er
es,
divided
lik
three
e
the
one
u
with
=
mo
u@
case
u:
and
(2)
in
Since
as
w
gen
e
in
will
duction
only
the
mak
h
e
e
use
t
of
It
Stric
tains
hartz
the
estimates,
ortan
w
features,
e
extra
restrict
hnicalities.
our
w
atten
er,
tion
result
to
Theorem
n
is
=
particular
3,
of
in
2
whic
the
h
section.
case
the
(2)
section
is
with
w
p
ell-p
w
osed
e
for
The
(
one
u
dev
0
to
;
equations
u
deriv
1
es
)
the
2
y
_
In
H
follo
s
the
is
_
to
H
e
s
ease
1
Beso
,
spaces,
s
o
>
d-P
1
theory
([10]),
parapro
and
(see
this
,
result
2]),
is
kno
kno
of
wn
hartz
to
is
b
([5
e
8
optimal.
6
W
W
e
ho
will
ev
pro
recall
v
of
e
duct
that
as
uniqueness
ell
holds
some
in
Stric
L
estimates
1
the
t
endix.
(
or
_
con
H
enience
s
the
).
w
Remark
recall
that
usual
the
of
problem
v
is
sube
spaces,
Th
Definition
0
1
B
L
v
et
the
(unlik
2
(
S
w
(
H
R
1
n
cal
)
cusing
such
l
that
k
b
2
in
=
di-
1
L
for
solution
j
is
in
j
u
immediately
1
see
and
es
b
say
=
i
0
k
for
)
j
(3)
e
j
denition.
>
equation
2
in
,
wing
C
j
e
(
+
x
in
)
t
=
observ
2
holds
nj
time)
=
(2
in
j
global
x
d
)
et
,
and
S
the
j