On the Hausdorff Dimension of the Mather Quotient

icon

56

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

56

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

On the Hausdorff Dimension of the Mather Quotient Albert Fathi ?, Alessio Figalli †, Ludovic Rifford ‡ 8 November, 2007 Abstract Under appropriate assumptions on the dimension of the ambient man- ifold and the regularity of the Hamiltonian, we show that the Mather quo- tient is small in term of Hausdorff dimension. Then, we present applications in dynamics. 1 Introduction Let M be a smooth manifold without boundary. We denote by TM the tangent bundle and by pi : TM ? M the canonical projection. A point in TM will be denoted by (x, v) with x ? M and v ? TxM = pi?1(x). In the same way a point of the cotangent bundle T ?M will be denoted by (x, p) with x ?M and p ? T ?xM a linear form on the vector space TxM . We will suppose that g is a complete Riemannian metric on M . For v ? TxM , the norm ?v?x is gx(v, v)1/2. We will denote by ?·?x the dual norm on T ?M . Moreover, for every pair x, y ?M , d(x, y) will denote the Riemannian distance from x to y. We will assume in the whole paper that H : T ?M ? R is an Hamiltonian of class Ck,?, with k ≥ 2, ? ? [0, 1], which satisfies the three following conditions: (H1) C2-strict convexity: ?(x, p) ? T ?M , the

  • critical viscosity subsolution

  • euler-lagrange flow

  • hausdorff dimension

  • positive definite

  • ?m

  • mather quotient

  • global viscosity

  • hamilton-jacobi equation does

  • following mather


Voir icon arrow

Publié par

Langue

English

OntheHausdorffDimensionoftheMather
Quotient

AlbertFathi,

AlessioFigalli,

LudovicRifford

8November,2007

Abstract
Underappropriateassumptionsonthedimensionoftheambientman-
ifoldandtheregularityoftheHamiltonian,weshowthattheMatherquo-
tientissmallintermofHausdorffdimension.Then,wepresentapplications
indynamics.

1Introduction
Let
M
beasmoothmanifoldwithoutboundary.Wedenoteby
TM
thetangent
bundleandby
π
:
TM

M
thecanonicalprojection.Apointin
TM
willbe
denotedby(
x,v
)with
x

M
and
v

T
x
M
=
π

1
(
x
).Inthesamewayapoint
ofthecotangentbundle
T

M
willbedenotedby(
x,p
)with
x

M
and
p

T
x

M
alinearformonthevectorspace
T
x
M
.Wewillsupposethat
g
isacomplete
Riemannianmetricon
M
.For
v

T
x
M
,thenorm
k
v
k
x
is
g
x
(
v,v
)
1
/
2
.Wewill
denoteby
k∙k
x
thedualnormon
T

M
.Moreover,foreverypair
x,y

M
,
d
(
x,y
)
willdenotetheRiemanniandistancefrom
x
to
y
.
Wewillassumeinthewholepaperthat
H
:
T

M

R
isanHamiltonianof
class
C
k,α
,with
k

2


[0
,
1],whichsatisfiesthethreefollowingconditions:
(H1)C
2
-strictconvexity:

(
x,p
)

T

M
,thesecondderivativealongthefibers

2
H/∂p
2
(
x,p
)isstrictlypositivedefinite;
(H2)
uniformsuperlinearity:
forevery
K

0thereexistsafiniteconstant
C
(
K
)suchthat

(
x,p
)

T

M,H
(
x,p
)

K
k
p
k
x
+
C
(
K
);

UMPA,ENSLyon,46Alle´ed’Italie,69007Lyon,France.
e-mail:albert.fathi@umpa.ens-
lyon.fr

Universite´deNice-SophiaAntipolis,ParcValrose,06100Nice,France.
e-mail:fi-
galli@unice.fr

Universite´deNice-SophiaAntipolis,ParcValrose,06100Nice,France.
e-mail:rif-
ford@unice.fr

1

(H3)
uniformboundednessinthefibers:
forevery
R

0,wehave
sup
{
H
(
x,p
)
|k
p
k
x

R
}
<
+

.
M∈xBytheWeakKAMTheoremweknowthat,undertheaboveconditions,there
is
c
(
H
)

R
suchthattheHamilton-Jacobiequation
H
(
x,d
x
u
)=
c
(HJ
c
)
admitsaglobalviscositysolution
u
:
M

R
for
c
=
c
(
H
)anddoesnotadmit
suchsolutionfor
c<c
(
H
),see[22,9,6,11,15].Infact,for
c<c
(
H
),the
Hamilton-Jacobiequationdoesnotadmitanyviscositysubsolution(forthetheory
ofviscositysolutions,wereferthereadertothemonographs[1,2,11]).Moreover,
if
M
isassumedtobecompact,then
c
(
H
)istheonlyvalueof
c
forwhichthe
Hamilton-Jacobiequationaboveadmitsaviscositysolution.Theconstant
c
(
H
)is
calledthe
criticalvalue
,orthe
Man˜e´criticalvalue
of
H
.Inthesequel,aviscosity
solution
u
:
M

R
of
H
(
x,d
x
u
)=
c
(
H
)willbecalleda
criticalviscositysolution
ora
weakKAMsolution
,whileaviscositysubsolution
u
of
H
(
x,d
x
u
)=
c
(
H
)will
becalleda
criticalviscositysubsolution
(or
criticalsubsolution
if
u
isatleastC
1
).
TheLagrangian
L
:
TM

R
associatedtotheHamiltonian
H
isdefinedby

(
x,v
)

TM,L
(
x,v
)=
p

m
T
a

x
M
{
p
(
v
)

H
(
x,p
)
}
.
xSince
H
isofclassC
k
,with
k

2,andsatisfiesthethreeconditions(H1)-(H3),it
iswell-known(seeforinstance[11]or[15,Lemma2.1]))that
L
isfiniteeverywhere
ofclassC
k
,andisaTonelliLagrangian,i.e.satisfiestheanalogousofconditions
(H1)-(H3).Moreover,theHamiltonian
H
canberecoveredfrom
L
by

(
x,p
)

T
x

M,H
(
x,p
)=max
{
p
(
v
)

L
(
x,v
)
}
.
MT∈vxThereforethefollowinginequalityisalwayssatisfied
p
(
v
)

L
(
x,v
)+
H
(
x,p
)
.
ThisinequalityiscalledtheFenchelinequality.Moreover,duetothestrictcon-
vexityof
L
,wehaveequalityintheFenchelinequalityifandonlyif
(
x,p
)=
L
(
x,v
)
,
where
L
:
TM

T

M
denotestheLegendretransformdefinedas
L∂L
(
x,v
)=
x,
(
x,v
)
.
v∂Underourassumption
L
isadiffeomorphismofclassatleast
C
1
.Wewilldenote
by
φ
tL
theEuler-Lagrangeflowof
L
,andby
X
L
thevectorfieldon
TM
that
2

generatestheflow
φ
tL
.Ifwedenoteby
φ
tH
theHamiltonianflowof
H
on
T

M
,
thenasiswell-known,seeforexample[11],thisflow
φ
tH
isconjugateto
φ
tL
by
theLegendretransform
L
.
AsdonebyMatherin[26],itisconvenienttointroducefor
t>
0fixed,the
function
h
t
:
M
×
M

R
definedby
tZ∀
x,y

M,h
t
(
x,y
)=inf
L
(
γ
(
s
)

˙(
s
))
ds,
0wheretheinfimumistakenoveralltheabsolutelycontinuouspaths
γ
:[0
,t
]

M
with
γ
(0)=
x
and
γ
(
t
)=
y
.The
Peierlsbarrier
isthefunction
h
:
M
×
M

R
definedby
h
(
x,y
)=li
t
m

i

nf
{
h
t
(
x,y
)+
c
(
H
)
t
}
.
Itisclearthatthisfunctionsatisfies

x,y,z

M,h
(
x,z
)

h
(
x,y
)+
h
t
(
y,z
)+
c
(
H
)
t
h
(
x,z
)

h
t
(
x,y
)+
c
(
H
)
t
+
h
(
y,z
)
,
andthereforeitalsosatisfiesthetriangleinequality

x,y,z

M,h
(
x,z
)

h
(
x,y
)+
h
(
y,z
)
.
Moreover,givenaweakKAMsolution
u
,wehave

x,y

M,u
(
y
)

u
(
x
)

h
(
x,y
)
.
Inparticular,wehave
h>
−∞
everywhere.Itfollows,fromthetriangleinequal-
ity,thatthefunction
h
iseitheridentically+

oritisfiniteeverywhere.If
M
iscompact,
h
isfiniteeverywhere.Inaddition,if
h
isfinite,thenforeach
x

M
thefunction
h
x
(

)=
h
(
x,

)isacriticalviscositysolution(see[11]or[16]).The
projectedAubryset
A
isdefinedby
A
=
{
x

M
|
h
(
x,x
)=0
}
.
FollowingMather,see[26,page1370],wesymmetrize
h
todefinethefunction
δ
M
:
M
×
M

R
by

x,y

M,δ
M
(
x,y
)=
h
(
x,y
)+
h
(
y,x
)
.
Since
h
satisfiesthetriangleinequalityand
h
(
x,x
)

0everywhere,thefunc-
tion
δ
M
issymmetric,everywherenonnegativeandsatisfiesthetriangleinequality.
Therestriction
δ
M
:
A×A→
R
isagenuinesemi-distanceontheprojectedAubry
set.Wewillcallthisfunction
δ
M
the
Mathersemi-distance
(evenwhenwecon-
sideriton
M
ratherthanon
A
).Wedefinethe
Matherquotient
(
A
M

M

Voir icon more