On the Hausdorff Dimension of the Mather Quotient

icon

56

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

56

pages

icon

English

icon

Ebook

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

On the Hausdorff Dimension of the Mather Quotient Albert Fathi ?, Alessio Figalli †, Ludovic Rifford ‡ 8 November, 2007 Abstract Under appropriate assumptions on the dimension of the ambient man- ifold and the regularity of the Hamiltonian, we show that the Mather quo- tient is small in term of Hausdorff dimension. Then, we present applications in dynamics. 1 Introduction Let M be a smooth manifold without boundary. We denote by TM the tangent bundle and by pi : TM ? M the canonical projection. A point in TM will be denoted by (x, v) with x ? M and v ? TxM = pi?1(x). In the same way a point of the cotangent bundle T ?M will be denoted by (x, p) with x ?M and p ? T ?xM a linear form on the vector space TxM . We will suppose that g is a complete Riemannian metric on M . For v ? TxM , the norm ?v?x is gx(v, v)1/2. We will denote by ?·?x the dual norm on T ?M . Moreover, for every pair x, y ?M , d(x, y) will denote the Riemannian distance from x to y. We will assume in the whole paper that H : T ?M ? R is an Hamiltonian of class Ck,?, with k ≥ 2, ? ? [0, 1], which satisfies the three following conditions: (H1) C2-strict convexity: ?(x, p) ? T ?M , the

  • critical viscosity subsolution

  • euler-lagrange flow

  • hausdorff dimension

  • positive definite

  • ?m

  • mather quotient

  • global viscosity

  • hamilton-jacobi equation does

  • following mather


Voir Alternate Text

Publié par

Nombre de lectures

10

Langue

English

OntheHausdorffDimensionoftheMather
Quotient

AlbertFathi,

AlessioFigalli,

LudovicRifford

8November,2007

Abstract
Underappropriateassumptionsonthedimensionoftheambientman-
ifoldandtheregularityoftheHamiltonian,weshowthattheMatherquo-
tientissmallintermofHausdorffdimension.Then,wepresentapplications
indynamics.

1Introduction
Let
M
beasmoothmanifoldwithoutboundary.Wedenoteby
TM
thetangent
bundleandby
π
:
TM

M
thecanonicalprojection.Apointin
TM
willbe
denotedby(
x,v
)with
x

M
and
v

T
x
M
=
π

1
(
x
).Inthesamewayapoint
ofthecotangentbundle
T

M
willbedenotedby(
x,p
)with
x

M
and
p

T
x

M
alinearformonthevectorspace
T
x
M
.Wewillsupposethat
g
isacomplete
Riemannianmetricon
M
.For
v

T
x
M
,thenorm
k
v
k
x
is
g
x
(
v,v
)
1
/
2
.Wewill
denoteby
k∙k
x
thedualnormon
T

M
.Moreover,foreverypair
x,y

M
,
d
(
x,y
)
willdenotetheRiemanniandistancefrom
x
to
y
.
Wewillassumeinthewholepaperthat
H
:
T

M

R
isanHamiltonianof
class
C
k,α
,with
k

2


[0
,
1],whichsatisfiesthethreefollowingconditions:
(H1)C
2
-strictconvexity:

(
x,p
)

T

M
,thesecondderivativealongthefibers

2
H/∂p
2
(
x,p
)isstrictlypositivedefinite;
(H2)
uniformsuperlinearity:
forevery
K

0thereexistsafiniteconstant
C
(
K
)suchthat

(
x,p
)

T

M,H
(
x,p
)

K
k
p
k
x
+
C
(
K
);

UMPA,ENSLyon,46Alle´ed’Italie,69007Lyon,France.
e-mail:albert.fathi@umpa.ens-
lyon.fr

Universite´deNice-SophiaAntipolis,ParcValrose,06100Nice,France.
e-mail:fi-
galli@unice.fr

Universite´deNice-SophiaAntipolis,ParcValrose,06100Nice,France.
e-mail:rif-
ford@unice.fr

1

(H3)
uniformboundednessinthefibers:
forevery
R

0,wehave
sup
{
H
(
x,p
)
|k
p
k
x

R
}
<
+

.
M∈xBytheWeakKAMTheoremweknowthat,undertheaboveconditions,there
is
c
(
H
)

R
suchthattheHamilton-Jacobiequation
H
(
x,d
x
u
)=
c
(HJ
c
)
admitsaglobalviscositysolution
u
:
M

R
for
c
=
c
(
H
)anddoesnotadmit
suchsolutionfor
c<c
(
H
),see[22,9,6,11,15].Infact,for
c<c
(
H
),the
Hamilton-Jacobiequationdoesnotadmitanyviscositysubsolution(forthetheory
ofviscositysolutions,wereferthereadertothemonographs[1,2,11]).Moreover,
if
M
isassumedtobecompact,then
c
(
H
)istheonlyvalueof
c
forwhichthe
Hamilton-Jacobiequationaboveadmitsaviscositysolution.Theconstant
c
(
H
)is
calledthe
criticalvalue
,orthe
Man˜e´criticalvalue
of
H
.Inthesequel,aviscosity
solution
u
:
M

R
of
H
(
x,d
x
u
)=
c
(
H
)willbecalleda
criticalviscositysolution
ora
weakKAMsolution
,whileaviscositysubsolution
u
of
H
(
x,d
x
u
)=
c
(
H
)will
becalleda
criticalviscositysubsolution
(or
criticalsubsolution
if
u
isatleastC
1
).
TheLagrangian
L
:
TM

R
associatedtotheHamiltonian
H
isdefinedby

(
x,v
)

TM,L
(
x,v
)=
p

m
T
a

x
M
{
p
(
v
)

H
(
x,p
)
}
.
xSince
H
isofclassC
k
,with
k

2,andsatisfiesthethreeconditions(H1)-(H3),it
iswell-known(seeforinstance[11]or[15,Lemma2.1]))that
L
isfiniteeverywhere
ofclassC
k
,andisaTonelliLagrangian,i.e.satisfiestheanalogousofconditions
(H1)-(H3).Moreover,theHamiltonian
H
canberecoveredfrom
L
by

(
x,p
)

T
x

M,H
(
x,p
)=max
{
p
(
v
)

L
(
x,v
)
}
.
MT∈vxThereforethefollowinginequalityisalwayssatisfied
p
(
v
)

L
(
x,v
)+
H
(
x,p
)
.
ThisinequalityiscalledtheFenchelinequality.Moreover,duetothestrictcon-
vexityof
L
,wehaveequalityintheFenchelinequalityifandonlyif
(
x,p
)=
L
(
x,v
)
,
where
L
:
TM

T

M
denotestheLegendretransformdefinedas
L∂L
(
x,v
)=
x,
(
x,v
)
.
v∂Underourassumption
L
isadiffeomorphismofclassatleast
C
1
.Wewilldenote
by
φ
tL
theEuler-Lagrangeflowof
L
,andby
X
L
thevectorfieldon
TM
that
2

generatestheflow
φ
tL
.Ifwedenoteby
φ
tH
theHamiltonianflowof
H
on
T

M
,
thenasiswell-known,seeforexample[11],thisflow
φ
tH
isconjugateto
φ
tL
by
theLegendretransform
L
.
AsdonebyMatherin[26],itisconvenienttointroducefor
t>
0fixed,the
function
h
t
:
M
×
M

R
definedby
tZ∀
x,y

M,h
t
(
x,y
)=inf
L
(
γ
(
s
)

˙(
s
))
ds,
0wheretheinfimumistakenoveralltheabsolutelycontinuouspaths
γ
:[0
,t
]

M
with
γ
(0)=
x
and
γ
(
t
)=
y
.The
Peierlsbarrier
isthefunction
h
:
M
×
M

R
definedby
h
(
x,y
)=li
t
m

i

nf
{
h
t
(
x,y
)+
c
(
H
)
t
}
.
Itisclearthatthisfunctionsatisfies

x,y,z

M,h
(
x,z
)

h
(
x,y
)+
h
t
(
y,z
)+
c
(
H
)
t
h
(
x,z
)

h
t
(
x,y
)+
c
(
H
)
t
+
h
(
y,z
)
,
andthereforeitalsosatisfiesthetriangleinequality

x,y,z

M,h
(
x,z
)

h
(
x,y
)+
h
(
y,z
)
.
Moreover,givenaweakKAMsolution
u
,wehave

x,y

M,u
(
y
)

u
(
x
)

h
(
x,y
)
.
Inparticular,wehave
h>
−∞
everywhere.Itfollows,fromthetriangleinequal-
ity,thatthefunction
h
iseitheridentically+

oritisfiniteeverywhere.If
M
iscompact,
h
isfiniteeverywhere.Inaddition,if
h
isfinite,thenforeach
x

M
thefunction
h
x
(

)=
h
(
x,

)isacriticalviscositysolution(see[11]or[16]).The
projectedAubryset
A
isdefinedby
A
=
{
x

M
|
h
(
x,x
)=0
}
.
FollowingMather,see[26,page1370],wesymmetrize
h
todefinethefunction
δ
M
:
M
×
M

R
by

x,y

M,δ
M
(
x,y
)=
h
(
x,y
)+
h
(
y,x
)
.
Since
h
satisfiesthetriangleinequalityand
h
(
x,x
)

0everywhere,thefunc-
tion
δ
M
issymmetric,everywherenonnegativeandsatisfiesthetriangleinequality.
Therestriction
δ
M
:
A×A→
R
isagenuinesemi-distanceontheprojectedAubry
set.Wewillcallthisfunction
δ
M
the
Mathersemi-distance
(evenwhenwecon-
sideriton
M
ratherthanon
A
).Wedefinethe
Matherquotient
(
A
M

M

Voir Alternate Text
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents