On the Complexity and Volume of Hyperbolic Manifolds

icon

20

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

20

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

ar X iv :0 81 1. 42 74 v1 [ ma th. GT ] 26 N ov 20 08 On the Complexity and Volume of Hyperbolic 3-Manifolds. Thomas Delzant and Leonid Potyagailo Abstract We compare the volume of a hyperbolic 3-manifold M of finite volume and the complexity of its fundamental group. 1 1 Introduction. Complexity of 3-manifolds and groups. One of the most striking corollaries of the recent solution of the geometrization conjecture for 3-manifolds is the fact that every aspherical 3- manifold is uniquely determined by its fundamental group. It seems to be natural to think that a topological/geometrical description of a 3-manifold M produces the simplest way to describe its fundamental group π1(M); on the other hand, the simplest way to define the group π1(M) gives rise to the most efficient way to describe M. More precisely, we want to compare the complexity of 3-manifolds and their fundamental groups. The study of the complexity of 3-manifolds goes back to the classical work of H. Kneser [K]. Recall that the Kneser complexity invariant k(M) is defined to be the minimal number of simplices of a triangulation of the manifold M . The main result of Kneser is that this complexity serves as a bound of the number of embedded incompressible 2-spheres in M , and bounds the numbers of factors in a decomposition ofM as a connected sum.

  • torsion any

  • group

  • since every

  • every finitely generated

  • finite discrete

  • all parabolic

  • manifold

  • kneser complexity

  • hyperbolic


Voir icon arrow

Publié par

Nombre de lectures

21

Langue

English

OntheComplexityandVolumeofHyperbolic3-Manifolds.ThomasDelzantandLeonidPotyagailoAbstractWecomparethevolumeofahyperbolic3-manifoldMoffinitevolumeandthecomplexityofitsfundamentalgroup.11Introduction.Complexityof3-manifoldsandgroups.Oneofthemoststrikingcorollariesoftherecentsolutionofthegeometrizationconjecturefor3-manifoldsisthefactthateveryaspherical3-manifoldisuniquelydeterminedbyitsfundamentalgroup.Itseemstobenaturaltothinkthatatopological/geometricaldescriptionofa3-manifoldMproducesthesimplestwaytodescribeitsfundamentalgroupπ1(M);ontheotherhand,thesimplestwaytodefinethegroupπ1(M)givesrisetothemostefficientwaytodescribeM.Moreprecisely,wewanttocomparethecomplexityof3-manifoldsandtheirfundamentalgroups.Thestudyofthecomplexityof3-manifoldsgoesbacktotheclassicalworkofH.Kneser[K].RecallthattheKnesercomplexityinvariantk(M)isdefinedtobetheminimalnumberofsimplicesofatriangulationofthemanifoldM.ThemainresultofKneseristhatthiscomplexityservesasaboundofthenumberofembeddedincompressible2-spheresinM,andboundsthenumbersoffactorsinadecompositionofMasaconnectedsum.AversionofthiscomplexitywasusedbyW.Hakentoprovetheexistenceofhierarchiesforalargeclassofcompact3-manifolds(calledsincethenHakenmanifolds).Anothermeasureofthecomplexityc(M)forthe3-manifoldMisduetoS.Matveev.ItistheminimalnumberofverticesofaspecialspineofM[Ma].Itisshownthatinmanyimportantcases(e.g.ifMisanon-compacthyperbolic3-manifoldoffinitevolume)onehask(M)=c(M)[Ma].12000MathematicsSubjectClassification.20F55,51F15,57M07,20F65,57M50Keywords:hyperbolicmanifolds,volume,invariantT.1
Therank(minimalnumberofgenerators)isalsoameasureofcomplexityofafinitelygener-atedgroup.AccordingtotheclassicaltheoremofI.Grushko[Gr],therankofafreeproductofgroupsisthesumoftheirranks.Thisimmediatelyimpliesthateveryfinitelygeneratedgroupisafreeproductoffinitelymanyfreelyindecomposiblefactors,whichisanalgebraicanalogueofKnesertheorem.ForafinitelypresentedgroupGameasureofcomplexityofGwasdefinedin[De].Hereisitsdefinition:Definition1.1.LetGbeafinitelypresentedgroup.WesaythatT(G)tifthereexistsasimply-connected2-dimensionalcomplexPsuchthatGactsfreelyandsimpliciallyonPandthethenumberof2-facesofthequotientΠ=P/Gislessthant.IfthegroupGisdefinedbyapresentation<a1,...ar;R1,...Rn>thesumΣ(|Ri|−2)servesasanaturalboundforT(G).NotethataninequalitybetweenKnesercomplexityandthisinvariantisobvious.Indeed,bycontractingamaximalsubtreeofthe2-dimensionalskeletonofatriangulationofMoneobtainsatriangularpresentationofthegroupπ1(M).Sinceevery3-simplexhasfour2-facesitfollowsT(π1(M))4k(M).Inordertocomparethecomplexityofamanifoldandthatofitsfundamentalgroup,itisenoughtofindafunctionθsuchthatθ(π1(M))T(π1(M)).NotethattheexistenceofsuchafunctionfollowsfromG.Perelman’ssolutionofthegeometrizationconjecture[Pe1-3].Indeedtherecouldexistatmostfinitelymanydifferent3-manifoldshavingthefundamentalgroupsisomorphictothesamegroupG(forirreducible3-manifoldswithboundarythiswasshownmuchearlierin[Swa]).Thequestionwhichstillremainsopenistodescribetheasymptoticbehaviorofthefunctionθ.Notethatforcertainlensspacesthefollowinginequalityisprovenin[PP]:c(Ln,1)lnnconstT(Z/nZ).However,theaboveproblemremainswidelyopenforirreducible3-manifoldswithinfinitefundamentalgroup.IfMisacompacthyperbolic3-manifold,D.Coopershowed[C]:VolMπT(π1(M))(C).whereVolMisthehyperbolicvolumeofM.Notethattheconverseinequalityindimension3isnottrue:thereexistsinfinitesequencesofdifferenthyperbolic3-manifoldsMnobtainedbyDehnfillingonafixedfinitevolumehyperbolicmanifoldMwithcuspssuchthatVolMn<VolM[Th].Theranksofthegroupsπ1(Mn)areallboundedbyrank(π1(M))andsinceπ1(Mn)arenotisomorphic,wemusthaveT(π1(Mn))→∞.SotheinvariantT(π1(M))isnotcomparable2
Voir icon more
Alternate Text